Abstract
This paper discusses a generalized time-varying SEIR propagation disease model subject to delays which potentially involves mixed regular and impulsive vaccination rules. The model takes also into account the natural population growing and the mortality associated to the disease, and the potential presence of disease endemic thresholds for both the infected and infectious population dynamics as well as the lost of immunity of newborns. The presence of outsider infectious is also considered. It is assumed that there is a finite number of time-varying distributed delays in the susceptible-infected coupling dynamics influencing the susceptible and infected differential equations. It is also assumed that there are time-varying point delays for the susceptible-infected coupled dynamics influencing the infected, infectious, and removed-by-immunity differential equations. The proposed regular vaccination control objective is the tracking of a prescribed suited infectious trajectory for a set of given initial conditions. The impulsive vaccination can be used to improve discrepancies between the SEIR model and its suitable reference one. Copyright 2010 M. De la Sen et al.
Original language | English |
---|---|
Article number | 281612 |
Journal | Advances in Difference Equations |
Volume | 2010 |
DOIs | |
Publication status | Published - 1 Dec 2010 |