TY - JOUR
T1 - Nitropyridine-1-oxides as excellent π-hole donors
T2 - Interplay between σ-hole (halogen, hydrogen, triel, and coordination bonds) and π-hole interactions
AU - Galmés, Bartomeu
AU - Franconetti, Antonio
AU - Frontera, Antonio
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/7/2
Y1 - 2019/7/2
N2 - In this manuscript, we use the primary source of geometrical information, i.e., Cambridge Structural Database (CSD), combined with density functional theory (DFT) calculations (PBE0-D3/def2-TZVP level of theory) to demonstrate the relevance of π-hole interactions in para-nitro substituted pyridine-1-oxides. More importantly, we show that the molecular electrostatic potential (MEP) value above and below the π-hole of the nitro group is largely influenced by the participation of the N-oxide group in several interactions like hydrogen-bonding (HB) halogen-bonding (XB), triel bonding (TrB), and finally, coordination-bonding (CB) (N+-O- coordinated to a transition metal). The CSD search discloses that p-nitro-pyridine-1-oxide derivatives have a strong propensity to participate in π-hole interactions via the nitro group and, concurrently, N-oxide group participates in a series of interactions as electron donor. Remarkably, the DFT calculations show from strong to moderate cooperativity effects between π-hole and HB/XB/TrB/CB interactions (σ-bonding). The synergistic effects between π-hole and σ-hole bonding interactions are studied in terms of cooperativity energies, using MEP surface analysis and the Bader’s quantum theory of atoms in molecules (QTAIM).
AB - In this manuscript, we use the primary source of geometrical information, i.e., Cambridge Structural Database (CSD), combined with density functional theory (DFT) calculations (PBE0-D3/def2-TZVP level of theory) to demonstrate the relevance of π-hole interactions in para-nitro substituted pyridine-1-oxides. More importantly, we show that the molecular electrostatic potential (MEP) value above and below the π-hole of the nitro group is largely influenced by the participation of the N-oxide group in several interactions like hydrogen-bonding (HB) halogen-bonding (XB), triel bonding (TrB), and finally, coordination-bonding (CB) (N+-O- coordinated to a transition metal). The CSD search discloses that p-nitro-pyridine-1-oxide derivatives have a strong propensity to participate in π-hole interactions via the nitro group and, concurrently, N-oxide group participates in a series of interactions as electron donor. Remarkably, the DFT calculations show from strong to moderate cooperativity effects between π-hole and HB/XB/TrB/CB interactions (σ-bonding). The synergistic effects between π-hole and σ-hole bonding interactions are studied in terms of cooperativity energies, using MEP surface analysis and the Bader’s quantum theory of atoms in molecules (QTAIM).
KW - Cooperativity
KW - CSD analysis
KW - Supramolecular chemistry
KW - π-hole interactions
KW - σ-hole interactions
UR - https://www.scopus.com/pages/publications/85070463866
U2 - 10.3390/ijms20143440
DO - 10.3390/ijms20143440
M3 - Article
C2 - 31336936
AN - SCOPUS:85070463866
SN - 1661-6596
VL - 20
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 14
M1 - 3440
ER -