Abstract
Original language | English |
---|---|
Article number | 1070 |
Number of pages | 13 |
Journal | J. Clin. Med. |
Volume | 9 |
Issue number | 4 |
DOIs | |
Publication status | Published - 9 Apr 2020 |
Keywords
- Bariatric surgery
- Metabolic control
- Time-within-remission range
- Type 2 diabetes
- antidiabetic agent
- glucose
- hemoglobin A1c
- high density lipoprotein cholesterol
- hyperglycemic agent
- insulin
- low density lipoprotein cholesterol
- triacylglycerol
- adult
- anthropometric parameters
- antidiabetic activity
- Article
- bariatric surgery
- body mass
- body weight gain
- body weight loss
- cohort analysis
- descriptive research
- diabetes mellitus
- disease duration
- dyslipidemia
- female
- follow up
- gastric bypass surgery
- human
- hypertension
- insulin dependent diabetes mellitus
- insulin treatment
- major clinical study
- male
- metabolic regulation
- middle aged
- morbidity
- non insulin dependent diabetes mellitus
- obesity
- outcome assessment
- propensity score
- recurrent disease
- remission
- retrospective study
- risk factor
- sleeve gastrectomy
- metabolic control
- time-within-remission range
- FOLLOW-UP
- Y-GASTRIC BYPASS
- OBESITY
- METABOLIC SURGERY
- LAPAROSCOPIC SLEEVE GASTRECTOMY
- PROPENSITY SCORE METHODS
- WEIGHT-LOSS
- type 2 diabetes
Fingerprint
Dive into the research topics of 'New metrics to assess type 2 diabetes after bariatric surgery: The “time-within-remission range”'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
New metrics to assess type 2 diabetes after bariatric surgery: The “time-within-remission range”. / De Hollanda, A.; Lecube, A.; Angel Rubio, M. et al.
In: J. Clin. Med., Vol. 9, No. 4, 1070, 09.04.2020.Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - New metrics to assess type 2 diabetes after bariatric surgery: The “time-within-remission range”
AU - De Hollanda, A.
AU - Lecube, A.
AU - Angel Rubio, M.
AU - Sánchez, E.
AU - Vilarrasa, N.
AU - Oliva, J.G.
AU - Fernández-Soto, M.L.
AU - Salas-Salvadó, J.
AU - Ballesteros-Pomar, M.D.
AU - Ciudin, A.
AU - Torres, F.
AU - Vidal, C.
AU - Morales, M.J.
AU - Valdés, S.
AU - Pellitero, S.
AU - Miñambres, I.
AU - Masmiquel, L.
AU - Goday, A.
AU - Suarez, L.
AU - Flores, L.
AU - Bueno, M.
AU - Caixàs, A.
AU - Bretón, I.
AU - Cámara, R.
AU - Olbeyra, R.
AU - Penso, R.
AU - De La Cruz, M.J.
AU - Simó-Servat, A.
AU - Pereyra-García, F.M.
AU - López-Mezquita, E.T.
AU - Gils, A.
AU - Fidilio, E.
AU - Bandrés, O.
AU - Martínez, Á.
AU - Abuín, J.
AU - Marques-Pamies, M.
AU - Tuneu, L.
AU - Arteaga, M.
AU - Castañer, O.
AU - Goñi, F.
AU - Arrizabalaga, C.
AU - Botana, M.A.
AU - Calañas, A.
AU - Rebollo, Á.
N1 - Cited By :2 Export Date: 17 February 2022 Correspondence Address: De Hollanda, A.; Hospital Clínic de BarcelonaSpain; email: anidehollanda@gmail.com Chemicals/CAS: glucose, 50-99-7, 84778-64-3; hemoglobin A1c, 62572-11-6; insulin, 9004-10-8 References: Blüher, M., Obesity: Global epidemiology and pathogenesis (2019) Nat. Rev. Endocrinol., 15, pp. 288-298; Popkin, B.M., Slining, M.M., New dynamics in global obesity facing low- and middle-income countries (2013) Obes. Rev., 14, pp. 11-20; Angrisani, L., Santonicola, A., Iovino, P., Vitiello, A., Higa, K., Himpens, J., Buchwald, H., Scopinaro, N., IFSO worldwide survey 2016: Primary, endoluminal, and revisional procedures (2018) Obes Surg., 28, pp. 3783-3794; Gloy, V.L., Briel, M., Bhatt, D.L., Kashyap, S.R., Schauer, P.R., Mingrone, G., Bucher, H.C., Nordmann, A.J., Bariatric surgery versus non-surgical treatment for obesity: A systematic review and meta-analysis of randomised controlled trials (2013) BMJ, 347, p. f5934; Schauer, P.R., Nor Hanipah, Z., Rubino, F., Metabolic surgery for treating type 2 diabetes mellitus: Now supported by the world’s leading diabetes organizations (2017) Cleve Clin. J. Med., 84, pp. S47-56; Sheng, B., Truong, K., Spitler, H., Zhang, L., Tong, X., The long-term effects of bariatric surgery on type 2 diabetes remission, microvascular and macrovascular complications, and mortality: A systematic (2017) Rev. Meta anal., 27, pp. 2724-2732; Buse, J.B., Caprio, S., Cefalu, W.T., Ceriello, A., Del Prato, S., Inzucchi, S.E., McLauglin, S., Khan, R., How do we define cure of diabetes? (2009) Diabetes Care., 32, pp. 2133-2135; Ahuja, A., Tantia, O., Chaudhuri, T., Khanna, S., Seetharamaiah, S., Majumdar, K., Goyal, G., Predicting remission of diabetes post metabolic surgery: A comparison of ABCD, diarem, and DRS scores (2018) Obes. Surg., 28, pp. 2025-2031; Chikunguwo, S.M., Wolfe, L.G., Dodson, P., Meador, J.G., Baugh, N., Clore, J.N., Kellum, J.M., Maher, J.W., Analysis of factors associated with durable remission of diabetes after Roux-en-Y gastric bypass (2010) Surg. Obes. Relat. Dis., 6, pp. 254-259; Still, C.D., Wood, G.C., Benotti, P., Petrick, A.T., Gabrielsen, J., Strodel, W.E., Ibele, A., Celaya, M.P., Preoperative prediction of type 2 diabetes remission following Roux-en-Y gastric bypass surgery: A retrospective cohort study (2014) Lancet Diabetes Endocrinol., 2, pp. 38-45; Salminen, P., Helmiö, M., Ovaska, J., Juuti, A., Leivonen, M., Peromaa-Haavisto, P., Hurme, S., Victorzon, M., Effect of laparoscopic sleeve gastrectomy vs. laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity (2018) JAMA, 319, pp. 241-254; Peterli, R., Wölnerhanssen, B.K., Vetter, D., Nett, P., Gass, M., Borbély, Y., Peters, T., Beglinger, C., Laparoscopic sleeve gastrectomy versus Roux-Y-Gastric bypass for morbid obesity-3-year outcomes of the prospective randomized swiss multicenter bypass or sleeve study (SM-BOSS) (2017) Ann. Surg., 265, pp. 466-473; Schauer, P.R., Bhatt, D.L., Kirwan, J.P., Wolski, K., Aminian, A., Brethauer, S.A., Navaneethan, S.D., Nissen, S.E., Bariatric surgery versus intensive medical therapy for diabetes-5- year outcomes (2017) N. Engl. J. Med., 376, pp. 641-651; Mingrone, G., Panunzi, S., De Gaetano, A., Guidone, C., Iaconelli, A., Nanni, G., Castagneto, M., Rubino, F., Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial (2015) Lancet, 386, pp. 964-973; Battelino, T., Danne, T., Bergenstal, R.M., Amiel, S.A., Beck, R., Biester, T., Bosi, E., Close, K.L., Clinical targets for continuous glucose monitoring data interpretation:Recommendations from the international consensus on time in range (2019) Diabetes Care, 42, pp. 1593-1603; Lecube, A., Monereo, S., RICIBA, what do we know about bariatric surgery in Spain? (2011) Endocrinol. Nutr., 58, pp. 323-324; Lecube, A., De Hollanda, A., Calañas, A., Vilarrasa, N., Rubio, M.A., Breton, I., Goday, A., Fernández-Soto, M.L., Trends in bariatric surgery in spain in the twenty-first century: Baseline results and 1-month follow up of the RICIBA, a national registry (2016) Obes. Surg., 26, pp. 1836-1842; Von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gøtzsche, P.C., Vandenbroucke, J.P., The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement:Guidelines for reporting observational studies (2007) Lancet, 370, pp. 1453-1457; Standards of medical care in diabetes-2018 (2018) Diabetes Care, 41, pp. 13-27; King, W.C., Hinerman, A.S., Belle, S.H., Wahed, A.S., Courcoulas, A.P., Comparison of the performance of common measures of weight regain after bariatric surgery for association with clinical outcomes (2018) JAMA, 320, pp. 1560-1569; D’Agostino, R.B., Jr., Propensity score methods for bias reduction in the comparison of a treatment to a nonrandomized control group (1998) Stat Med., 17, pp. 2265-2281; Austin, P.C., An introduction to propensity score methods for reducing the effects of confounding in observational studies (2011) Multivar. Behav. Res., 46, pp. 399-424; Cohen, J., (1977) Statistical power analysis for the bahavioral sciences, pp. 19-66. , 2nd ed.; Academic Press: New York, NY, United States; Laiteerapong, N., Ham, S.A., Gao, Y., Moffet, H.H., Liu, J.Y., Huang, E.S., Karter, A.J., The legacy effect in type 2 diabetes:Impactofearlyglycemic control on future complications (the Diabetes & Aging study) (2019) Diabetes Care, 42, pp. 416-426; Madsen, L.R., Baggesen, L.M., Richelsen, B., Thomsen, R.W., Effect of Roux-en-Y gastric bypass surgery on diabetes remission and complications in individuals with type 2 diabetes: A Danish population-based matched cohort study (2019) Diabetologia., 62, pp. 611-620; Yska, J.P., Van Roon, E.N., De Boer, A., Leufkens, H.G.M., Wilffert, B., De Heide, L.J., De Vries, F., Lalmohamed, A., Remission of type 2 diabetes mellitus in patients after different types of bariatric surgery (2015) JAMA Surg., 150, p. 1126; Lewis, K.H., Arterburn, D.E., Zhang, F., Callaway, K., Wallace, J., Fernandez, A., Ross-Degnan, D., Wharam, J.F., Comparative effectiveness of vertical sleeve gastrectomy versus roux en y gastric bypass for diabetes treatment (2019) Ann Surg.; Carlsson, L.M.S., Sjöholm, K., Karlsson, C., Jacobson, P., Andersson-Assarsson, J.C., Svensson, P.A., Larsson, I., Carlsson, B., (2017) Long-term incidence of microvascular disease after bariatric surgery or usual care in patients with obesity stratified by baseline glucose status: A post-hoc analysis of participants from the swedish obese subjects study., 5, pp. 271-279; Topart, P.A., Becouarn, G., Revision and reversal after biliopancreatic diversion for excessive side effects or ineffective weight loss: A review of the current literature on indications and procedures (2015) Surg Obes Relat Dis., 11, pp. 965-972; Ramos-Levi, A.M., Matia, P., Cabrerizo, L., Barabash, A., Sanchez-Pernaute, A., Calle-Pascual, A.L., Torres, A.J., Rubio, M.A., Statistical models to predict type 2 diabetes remission after bariatric surgery (2014) J Diabetes., 6, pp. 472-477; Jiménez, A., Ibarzabal, A., Moizé, V., Pané, A., Andreu, A., Molero, J., De Hollanda, A., Lacy, A., Ten-year outcomes after Roux-en-Y gastric bypass and sleeve gastrectomy: An observational nonrandomized cohort study (2019) Surg. Obes. Relat. Dis., 15, pp. 288-382; Arterburn, D., Wellman, R., Emiliano, A., Smith, S.R., Odegaard, A.O., Murali, S., Williams, N., Coley, R.Y., Comparative effectiveness and safety of bariatric procedures for weight loss a PCORnet cohort study (2018) Ann. Int. Med., 169, pp. 741-750; Baig, S.J., Priya, P., Mahawar, K.K., Shah, S., Weight regain after bariatric surgery-A multicentre study of 9617 patients from indian bariatric surgery outcome reporting group (2019) Obes. Surg., 29, pp. 1583-1592
PY - 2020/4/9
Y1 - 2020/4/9
N2 - Almost one third of patients do not achieve type 2 diabetes remission after bariatric surgery or are unable to sustain this effect long term. Our objective was to delve further into the dynamic responses of diabetes after bariatric surgery and to evaluate the “time-within-remission range” as a variable of metabolic control. A descriptive cohort study was done using a computerised multicentre and multidisciplinary registry. All data were adjusted by propensity score. A total of 1186 subjects with a follow-up of 4.5 ± 2.5 years were included. Type of surgery, diabetes remission, recurrence of diabetes, “time-within-remission range” and key predictors of diabetes outcomes were assessed. All patients (70% women, 51.4 ± 9.2 years old, body mass index (BMI) 46.3 ± 6.9 kg/m2) underwent primary bariatric procedures. “Time-within-remission range” were 83.3% (33.3- 91.6) after gastric bypass, 68.7% (7.1-87.5) after sleeve gastrectomy and 90% (83.3-92.8) after malabsorptive techniques (p < 0.001 for all). Duration of diabetes, baseline HbA1c and insulin treatment were significantly negatively correlated with the “time-within-remission range”. The association of bariatric techniques with “time-within-remission range”, using gastric bypass as a reference, were: odds ratio (OR) 3.70 (2.34-5.84), p < 0.001 for malabsorptive techniques and OR 0.55 (0.40-0.75), p < 0.001 for sleeve gastrectomy. Characteristics of type 2 diabetes powerfully influence the outcomes of bariatric surgery. The “time-within-remission range” unveils a superiority of gastric bypass compared to sleeve gastrectomy. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
AB - Almost one third of patients do not achieve type 2 diabetes remission after bariatric surgery or are unable to sustain this effect long term. Our objective was to delve further into the dynamic responses of diabetes after bariatric surgery and to evaluate the “time-within-remission range” as a variable of metabolic control. A descriptive cohort study was done using a computerised multicentre and multidisciplinary registry. All data were adjusted by propensity score. A total of 1186 subjects with a follow-up of 4.5 ± 2.5 years were included. Type of surgery, diabetes remission, recurrence of diabetes, “time-within-remission range” and key predictors of diabetes outcomes were assessed. All patients (70% women, 51.4 ± 9.2 years old, body mass index (BMI) 46.3 ± 6.9 kg/m2) underwent primary bariatric procedures. “Time-within-remission range” were 83.3% (33.3- 91.6) after gastric bypass, 68.7% (7.1-87.5) after sleeve gastrectomy and 90% (83.3-92.8) after malabsorptive techniques (p < 0.001 for all). Duration of diabetes, baseline HbA1c and insulin treatment were significantly negatively correlated with the “time-within-remission range”. The association of bariatric techniques with “time-within-remission range”, using gastric bypass as a reference, were: odds ratio (OR) 3.70 (2.34-5.84), p < 0.001 for malabsorptive techniques and OR 0.55 (0.40-0.75), p < 0.001 for sleeve gastrectomy. Characteristics of type 2 diabetes powerfully influence the outcomes of bariatric surgery. The “time-within-remission range” unveils a superiority of gastric bypass compared to sleeve gastrectomy. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
KW - Bariatric surgery
KW - Metabolic control
KW - Time-within-remission range
KW - Type 2 diabetes
KW - antidiabetic agent
KW - glucose
KW - hemoglobin A1c
KW - high density lipoprotein cholesterol
KW - hyperglycemic agent
KW - insulin
KW - low density lipoprotein cholesterol
KW - triacylglycerol
KW - adult
KW - anthropometric parameters
KW - antidiabetic activity
KW - Article
KW - bariatric surgery
KW - body mass
KW - body weight gain
KW - body weight loss
KW - cohort analysis
KW - descriptive research
KW - diabetes mellitus
KW - disease duration
KW - dyslipidemia
KW - female
KW - follow up
KW - gastric bypass surgery
KW - human
KW - hypertension
KW - insulin dependent diabetes mellitus
KW - insulin treatment
KW - major clinical study
KW - male
KW - metabolic regulation
KW - middle aged
KW - morbidity
KW - non insulin dependent diabetes mellitus
KW - obesity
KW - outcome assessment
KW - propensity score
KW - recurrent disease
KW - remission
KW - retrospective study
KW - risk factor
KW - sleeve gastrectomy
KW - metabolic control
KW - time-within-remission range
KW - FOLLOW-UP
KW - Y-GASTRIC BYPASS
KW - OBESITY
KW - METABOLIC SURGERY
KW - LAPAROSCOPIC SLEEVE GASTRECTOMY
KW - PROPENSITY SCORE METHODS
KW - WEIGHT-LOSS
KW - type 2 diabetes
UR - https://europepmc.org/articles/PMC7230819
UR - https://www.mendeley.com/catalogue/0827110e-316f-303d-bfe8-7af0def8c30c/
U2 - 10.3390/jcm9041070
DO - 10.3390/jcm9041070
M3 - Article
C2 - 32283783
VL - 9
IS - 4
M1 - 1070
ER -