TY - JOUR
T1 - Neurobiology of environmental enrichment in pigs
T2 - Changes in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome
AU - Arroyo, Laura
AU - Valent, Daniel
AU - Carreras, Ricard
AU - Pato, Raquel
AU - Sabrià, Josefa
AU - Velarde, Antonio
AU - Bassols, Anna
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/10/30
Y1 - 2020/10/30
N2 - Environmental enrichment in porcine farms improves animal welfare and leads to better public acceptance. To better understand the neurological mechanisms of the response to environmental enrichment, monoaminergic neurotransmitters were quantified in several brain areas from pigs after eight weeks of housing in barren or enriched conditions. Furthermore, iTRAQ labelling combined with LC-MS/MS was used to identify differentially abundant proteins in the hippocampus. Blood biochemical parameters related with stress and welfare were measured. Pigs under enriched conditions showed a decrease in plasma cortisol and lactate. The decrease in noradrenaline in the prefrontal cortex and amygdala, a general decrease in the dopaminergic system and an increase of serotonin in the striatum indicate a lower response to stress in enriched conditions. In the proteomic analysis, 2304 proteins were identified, of which 56 were differential between housing groups (46 upregulated and 10 downregulated). Bioinformatics analysis revealed that they were mainly related to ribosome, translation, microtubules and metabolic mitochondrial processes, indicating that pigs under enriched environments have higher abundance of proteins related to protein synthesis and neuronal activity. Together with previous behavioural studies, our results suggest that environmental enrichment provides a less stressful environment and that pigs cope better with stress conditions like the slaughterhouse. Significance: Animal welfare has become an important aspect for the sustainability of animal production. The modification of the environment by enriching it with rooting materials and wider space allowance is known to have a positive effect on pigs' welfare. Searching for the underlying neurobiological mechanisms, we found that housing in an enriched environment increased the abundance of proteins related to protein synthesis, microtubule assembly, vesicle-mediated transport and energy metabolism in the hippocampus of pigs. Likewise, changes in the neurotransmitter profile in several brain areas were compatible with a better response to stress. This study expands the knowledge about the biological basis of animal welfare-promoting actions.
AB - Environmental enrichment in porcine farms improves animal welfare and leads to better public acceptance. To better understand the neurological mechanisms of the response to environmental enrichment, monoaminergic neurotransmitters were quantified in several brain areas from pigs after eight weeks of housing in barren or enriched conditions. Furthermore, iTRAQ labelling combined with LC-MS/MS was used to identify differentially abundant proteins in the hippocampus. Blood biochemical parameters related with stress and welfare were measured. Pigs under enriched conditions showed a decrease in plasma cortisol and lactate. The decrease in noradrenaline in the prefrontal cortex and amygdala, a general decrease in the dopaminergic system and an increase of serotonin in the striatum indicate a lower response to stress in enriched conditions. In the proteomic analysis, 2304 proteins were identified, of which 56 were differential between housing groups (46 upregulated and 10 downregulated). Bioinformatics analysis revealed that they were mainly related to ribosome, translation, microtubules and metabolic mitochondrial processes, indicating that pigs under enriched environments have higher abundance of proteins related to protein synthesis and neuronal activity. Together with previous behavioural studies, our results suggest that environmental enrichment provides a less stressful environment and that pigs cope better with stress conditions like the slaughterhouse. Significance: Animal welfare has become an important aspect for the sustainability of animal production. The modification of the environment by enriching it with rooting materials and wider space allowance is known to have a positive effect on pigs' welfare. Searching for the underlying neurobiological mechanisms, we found that housing in an enriched environment increased the abundance of proteins related to protein synthesis, microtubule assembly, vesicle-mediated transport and energy metabolism in the hippocampus of pigs. Likewise, changes in the neurotransmitter profile in several brain areas were compatible with a better response to stress. This study expands the knowledge about the biological basis of animal welfare-promoting actions.
KW - Animal welfare
KW - Environmental enrichment
KW - Hippocampus
KW - Isobaric tags for relative and absolute
KW - Quantification (iTRAQ), neurotransmission, pig.
UR - http://www.scopus.com/inward/record.url?scp=85090554033&partnerID=8YFLogxK
U2 - 10.1016/j.jprot.2020.103943
DO - 10.1016/j.jprot.2020.103943
M3 - Article
C2 - 32814107
AN - SCOPUS:85090554033
SN - 1874-3919
VL - 229
JO - Journal of Proteomics
JF - Journal of Proteomics
M1 - 103943
ER -