TY - JOUR
T1 - Nerve Excitability and Neuropathic Pain is Reduced by BET Protein Inhibition After Spared Nerve Injury
AU - Palomés-Borrajo, Georgina
AU - Badia, Jordi
AU - Navarro, Xavier
AU - Penas, Clara
N1 - Publisher Copyright:
© 2021 United States Association for the Study of Pain, Inc.
PY - 2021/12
Y1 - 2021/12
N2 - Neuropathic pain is a common disability produced by enhanced neuronal excitability after nervous system injury. The pathophysiological changes that underlie the generation and maintenance of neuropathic pain require modifications of transcriptional programs. In particular, there is an induction of pro-inflammatory neuromodulators levels, and changes in the expression of ion channels and other factors intervening in the determination of the membrane potential in neuronal cells. We have previously found that inhibition of the BET proteins epigenetic readers reduced neuroinflammation after spinal cord injury. Within the present study we aimed to determine if BET protein inhibition may also affect neuroinflammation after a peripheral nerve injury, and if this would beneficially alter neuronal excitability and neuropathic pain. For this purpose, C57BL/6 female mice underwent spared nerve injury (SNI), and were treated with the BET inhibitor JQ1, or vehicle. Electrophysiological and algesimetry tests were performed on these mice. We also determined the effects of JQ1 treatment after injury on neuroinflammation, and the expression of neuronal components important for the maintenance of axon membrane potential. We found that treatment with JQ1 affected neuronal excitability and mechanical hyperalgesia after SNI in mice. BET protein inhibition regulated cytokine expression and reduced microglial reactivity after injury. In addition, JQ1 treatment altered the expression of SCN3A, SCN9A, KCNA1, KCNQ2, KCNQ3, HCN1 and HCN2 ion channels, as well as the expression of the Na+/K+ ATPase pump subunits. In conclusion, both, alteration of inflammation, and neuronal transcription, could be the responsible epigenetic mechanisms for the reduction of excitability and hyperalgesia observed after BET inhibition. Inhibition of BET proteins is a promising therapy for reducing neuropathic pain after neural injury. Perspective: Neuropathic pain is a common disability produced by enhanced neuronal excitability after nervous system injury. The underlying pathophysiological changes require modifications of transcriptional programs. This study notes that inhibition of BET proteins is a promising therapy for reducing neuropathic pain after neural injury.
AB - Neuropathic pain is a common disability produced by enhanced neuronal excitability after nervous system injury. The pathophysiological changes that underlie the generation and maintenance of neuropathic pain require modifications of transcriptional programs. In particular, there is an induction of pro-inflammatory neuromodulators levels, and changes in the expression of ion channels and other factors intervening in the determination of the membrane potential in neuronal cells. We have previously found that inhibition of the BET proteins epigenetic readers reduced neuroinflammation after spinal cord injury. Within the present study we aimed to determine if BET protein inhibition may also affect neuroinflammation after a peripheral nerve injury, and if this would beneficially alter neuronal excitability and neuropathic pain. For this purpose, C57BL/6 female mice underwent spared nerve injury (SNI), and were treated with the BET inhibitor JQ1, or vehicle. Electrophysiological and algesimetry tests were performed on these mice. We also determined the effects of JQ1 treatment after injury on neuroinflammation, and the expression of neuronal components important for the maintenance of axon membrane potential. We found that treatment with JQ1 affected neuronal excitability and mechanical hyperalgesia after SNI in mice. BET protein inhibition regulated cytokine expression and reduced microglial reactivity after injury. In addition, JQ1 treatment altered the expression of SCN3A, SCN9A, KCNA1, KCNQ2, KCNQ3, HCN1 and HCN2 ion channels, as well as the expression of the Na+/K+ ATPase pump subunits. In conclusion, both, alteration of inflammation, and neuronal transcription, could be the responsible epigenetic mechanisms for the reduction of excitability and hyperalgesia observed after BET inhibition. Inhibition of BET proteins is a promising therapy for reducing neuropathic pain after neural injury. Perspective: Neuropathic pain is a common disability produced by enhanced neuronal excitability after nervous system injury. The underlying pathophysiological changes require modifications of transcriptional programs. This study notes that inhibition of BET proteins is a promising therapy for reducing neuropathic pain after neural injury.
KW - BET proteins
KW - Excitability
KW - Inflammation
KW - Neuropathic pain
KW - Spared nerve injury
UR - http://www.scopus.com/inward/record.url?scp=85110291906&partnerID=8YFLogxK
U2 - 10.1016/j.jpain.2021.05.005
DO - 10.1016/j.jpain.2021.05.005
M3 - Article
C2 - 34157407
AN - SCOPUS:85110291906
VL - 22
SP - 1617
EP - 1630
JO - Journal of Pain
JF - Journal of Pain
SN - 1526-5900
IS - 12
ER -