Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts

Subrata Chowdhury, Logan Schulz, Biagio Palmisano, Parminder Singh, Julian M. Berger, Vijay K. Yadav, Paula Mera, Helga Ellingsgaard, Juan Hidalgo, Jens Brüning, Gerard Karsenty

Research output: Contribution to journalArticleResearchpeer-review

10 Citations (Scopus)

Abstract

Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity has been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking musclederived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Finally, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.

Original languageAmerican English
Pages (from-to)2888-2902
Number of pages15
JournalJournal of Clinical Investigation
Volume130
Issue number6
DOIs
Publication statusPublished - 1 Jun 2020

Fingerprint Dive into the research topics of 'Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts'. Together they form a unique fingerprint.

Cite this