Projects per year
Abstract
The use of whole-slide images (WSIs) in pathology entails stringent storage and transmission requirements because of their huge dimensions. Therefore, image compression is an essential tool to enable efficient access to these data. In particular, color transforms are needed to exploit the very high degree of inter-component correlation and obtain competitive compression performance. Even though the state-of-the-art color transforms remove some redundancy, they disregard important details of the compression algorithm applied after the transform. Therefore, their coding performance is not optimal. We propose an optimization method called mosaic optimization for designing irreversible and reversible color transforms simultaneously optimized for any given WSI and the subsequent compression algorithm. Mosaic optimization is designed to attain reasonable computational complexity and enable continuous scanner operation. Exhaustive experimental results indicate that, for JPEG 2000 at identical compression ratios, the optimized transforms yield images more similar to the original than the other state-of-the-art transforms. Specifically, irreversible optimized transforms outperform the Karhunen-Loève Transform in terms of PSNR (up to 1.1 dB), the HDR-VDP-2 visual distortion metric (up to 3.8 dB), and the accuracy of computer-aided nuclei detection tasks (F1 score up to 0.04 higher). In addition, reversible optimized transforms achieve PSNR, HDR-VDP-2, and nuclei detection accuracy gains of up to 0.9 dB, 7.1 dB, and 0.025, respectively, when compared with the reversible color transform in lossy-to-lossless compression regimes.
Original language | English |
---|---|
Article number | 8402229 |
Pages (from-to) | 21-32 |
Number of pages | 12 |
Journal | IEEE Transactions on Medical Imaging |
Volume | 38 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2019 |
Keywords
- Algorithms
- Color
- Data Compression/methods
- Databases, Factual
- Histological Techniques
- Humans
- Image Interpretation, Computer-Assisted/methods
- Neoplasms/diagnostic imaging
Fingerprint
Dive into the research topics of 'Mosaic-based color-transform optimization for lossy and lossy-to-lossless compression of pathology whole-slide images'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Compresión de datos para constelaciones de satélites en la era del Newspace
Serra Sagrista, J. (Principal Investigator), Bartrina Rapesta, J. (Principal Investigator 2), Cea Dominguez, C. D. (Collaborator), Auli Llinas, F. (Investigator), Blanes Garcia, I. (Investigator) & Mijares Verdú, S. (Collaborator)
Spanish Ministry of Economy and Competitiveness (MINECO)
1/01/19 → 30/09/22
Project: Research Projects and Other Grants