TY - JOUR
T1 - Morphokinetics of cloned mouse embryos treated with epigenetic drugs and blastocyst prediction
AU - Mallol, Anna
AU - Piqué, Laia
AU - Santaló, Josep
AU - Ibáñez, Elena
PY - 2016/3/1
Y1 - 2016/3/1
N2 - © 2016 Society for Reproduction and Fertility. Time-lapse monitoring of somatic cell nuclear transfer (SCNT) embryosmay help to predict developmental success and increase birth and embryonic stem cells (ESC) derivation rates. Here, the development of ICSI fertilized embryos and of SCNT embryos, non-treated or treated with either psammaplin A (PsA) or vitamin C (VitC), was monitored, and the ESC derivation rates from the resulting blastocysts were determined. Blastocyst rates were similar among PsA-treated and VitC-treated SCNTembryos and ICSI embryos, but lower for nontreated SCNT embryos. ESC derivation rates were higher in treated SCNT embryos than in non-treated or ICSI embryos. Time-lapse microscopy analysis showed that non-treated SCNT embryos had a delayed development from the second division until compaction, lower number of blastomeres at compaction and longer compaction and cavitation durations compared with ICSI ones. Treatment of SCNTembryos with PsA further increased this delay whereas treatment with VitC slightly reduced it, suggesting that both treatments act through different mechanisms, not necessarily related to their epigenetic effects. Despite these differences, the time of completion of the third division, alone or combined with the duration of compaction and/or the presence of fragmentation, had a strong predictive value for blastocyst formation in all groups. In contrast, we failed to predict ESC derivation success from embryo morphokinetics. Time-lapse technology allows the selection of SCNT embryos with higher developmental potential and could help to increase cloning outcomes. Nonetheless, further studies are needed to find reliable markers for full-term development and ESC derivation success.
AB - © 2016 Society for Reproduction and Fertility. Time-lapse monitoring of somatic cell nuclear transfer (SCNT) embryosmay help to predict developmental success and increase birth and embryonic stem cells (ESC) derivation rates. Here, the development of ICSI fertilized embryos and of SCNT embryos, non-treated or treated with either psammaplin A (PsA) or vitamin C (VitC), was monitored, and the ESC derivation rates from the resulting blastocysts were determined. Blastocyst rates were similar among PsA-treated and VitC-treated SCNTembryos and ICSI embryos, but lower for nontreated SCNT embryos. ESC derivation rates were higher in treated SCNT embryos than in non-treated or ICSI embryos. Time-lapse microscopy analysis showed that non-treated SCNT embryos had a delayed development from the second division until compaction, lower number of blastomeres at compaction and longer compaction and cavitation durations compared with ICSI ones. Treatment of SCNTembryos with PsA further increased this delay whereas treatment with VitC slightly reduced it, suggesting that both treatments act through different mechanisms, not necessarily related to their epigenetic effects. Despite these differences, the time of completion of the third division, alone or combined with the duration of compaction and/or the presence of fragmentation, had a strong predictive value for blastocyst formation in all groups. In contrast, we failed to predict ESC derivation success from embryo morphokinetics. Time-lapse technology allows the selection of SCNT embryos with higher developmental potential and could help to increase cloning outcomes. Nonetheless, further studies are needed to find reliable markers for full-term development and ESC derivation success.
U2 - 10.1530/REP-15-0354
DO - 10.1530/REP-15-0354
M3 - Article
SN - 1470-1626
VL - 151
SP - 203
EP - 214
JO - Reproduction
JF - Reproduction
ER -