Abstract
© 2016 American Chemical Society. Mn3O4@CoMn2O4 nanoparticles (NPs) were produced at low temperature and ambient atmosphere using a one-pot two-step synthesis protocol involving the cation exchange of Mn by Co in preformed Mn3O4 NPs. Selecting the proper cobalt precursor, the nucleation of CoxOy crystallites at the Mn3O4@CoMn2O4 surface could be simultaneously promoted to form Mn3O4@CoMn2O4-CoxOy NPs. Such heterostructured NPs were investigated for oxygen reduction and evolution reactions (ORR, OER) in alkaline solution. Mn3O4@CoMn2O4-CoxOy NPs with [Co]/[Mn] = 1 showed low overpotentials of 0.31 V at -3 mA·cm-2 and a small Tafel slope of 52 mV·dec-1 for ORR, and overpotentials of 0.31 V at 10 mA·cm-2 and a Tafel slope of 81 mV·dec-1 for OER, thus outperforming commercial Pt-, IrO2-based and previously reported transition metal oxides. This cation-exchange-based synthesis protocol opens up a new approach to design novel heterostructured NPs as efficient nonprecious metal bifunctional oxygen catalysts.
Original language | English |
---|---|
Pages (from-to) | 17435-17444 |
Journal | ACS applied materials & interfaces |
Volume | 8 |
Issue number | 27 |
DOIs | |
Publication status | Published - 13 Jul 2016 |
Keywords
- OER
- ORR
- cation exchange
- cobalt oxide
- colloidal
- electrocatalysis
- manganese oxide
- nanoparticle