TY - JOUR
T1 - Methoxycarbonylation of olefins catalyzed by palladium complexes bearing P,N-donor ligands
AU - Aguirre, Pedro A.
AU - Lagos, Carolina A.
AU - Moya, Sergio A.
AU - Zúñiga, César
AU - Vera-Oyarce, Cristian
AU - Sola, Eduardo
AU - Peris, Gabriel
AU - Bayón, J. Carles
PY - 2007/11/26
Y1 - 2007/11/26
N2 - The methoxycarbonylation of alkenes catalyzed by palladium(ii) complexes with P,N-donor ligands, 2-(diphenylphosphinoamino)pyridine (Ph 2PNHpy), 2-[(diphenylphosphino)methyl]pyridine (Ph 2PCH2py), and 2-(diphenylphosphino)quinoline (Ph 2Pqn) has been investigated. The results show that the complex [PdCl(PPh3)(Ph2PNHpy)]Cl or an equimolar mixture of [PdCl2(Ph2PNHpy)] and PPh3, in the presence of p-toluensulfonic acid (TsOH), is an efficient catalyst for this reaction. This catalytic system promotes the conversion of styrene into methyl 2-phenylpropanoate and methyl 3-phenylpropanoate with nearly complete chemoselectivity, 98% regioselectivity in the branched isomer, and high turnover frequency, even at alkene/Pd molar ratios of 1000. Best results were obtained in toluene-MeOH (3: 1) solvent. The Pd/Ph2PNHpy catalyst is also efficient in the methoxycarbonylation of cyclohexene and 1-hexene, although with lower rates than with styrene. Related palladium complexes [PdCl(PPh 3)L]Cl (L = Ph2PCH2py and Ph2Pqn) show lower activity in the methoxycarbonylation of styrene than that of the 2-(diphenylphosphinoamino)pyridine ligand. Replacement of the last ligand by (diphenylphosphino)phenylamine (Ph2PNHPh) or 2- (diphenylphosphinoaminomethyl)pyridine (Ph2PNMepy) also reduces significantly the activity of the catalyst, indicating that both the presence of the pyridine fragment as well as the NH group, are required to achieve a high performing catalyst. Isotopic labeling experiments using MeOD are consistent with a hydride mechanism for the [PdCl(PPh3)(Ph2PNHpy)]Cl catalyst. © The Royal Society of Chemistry.
AB - The methoxycarbonylation of alkenes catalyzed by palladium(ii) complexes with P,N-donor ligands, 2-(diphenylphosphinoamino)pyridine (Ph 2PNHpy), 2-[(diphenylphosphino)methyl]pyridine (Ph 2PCH2py), and 2-(diphenylphosphino)quinoline (Ph 2Pqn) has been investigated. The results show that the complex [PdCl(PPh3)(Ph2PNHpy)]Cl or an equimolar mixture of [PdCl2(Ph2PNHpy)] and PPh3, in the presence of p-toluensulfonic acid (TsOH), is an efficient catalyst for this reaction. This catalytic system promotes the conversion of styrene into methyl 2-phenylpropanoate and methyl 3-phenylpropanoate with nearly complete chemoselectivity, 98% regioselectivity in the branched isomer, and high turnover frequency, even at alkene/Pd molar ratios of 1000. Best results were obtained in toluene-MeOH (3: 1) solvent. The Pd/Ph2PNHpy catalyst is also efficient in the methoxycarbonylation of cyclohexene and 1-hexene, although with lower rates than with styrene. Related palladium complexes [PdCl(PPh 3)L]Cl (L = Ph2PCH2py and Ph2Pqn) show lower activity in the methoxycarbonylation of styrene than that of the 2-(diphenylphosphinoamino)pyridine ligand. Replacement of the last ligand by (diphenylphosphino)phenylamine (Ph2PNHPh) or 2- (diphenylphosphinoaminomethyl)pyridine (Ph2PNMepy) also reduces significantly the activity of the catalyst, indicating that both the presence of the pyridine fragment as well as the NH group, are required to achieve a high performing catalyst. Isotopic labeling experiments using MeOD are consistent with a hydride mechanism for the [PdCl(PPh3)(Ph2PNHpy)]Cl catalyst. © The Royal Society of Chemistry.
U2 - 10.1039/b704615b
DO - 10.1039/b704615b
M3 - Article
SN - 1477-9226
SP - 5419
EP - 5426
JO - Dalton Transactions
JF - Dalton Transactions
IS - 46
ER -