Mechanical and frictional behaviour of nano-porous anodized aluminium

N. Tsyntsaru, B. Kavas, J. Sort, M. Urgen, J. P. Celis

Research output: Contribution to journalArticleResearchpeer-review

33 Citations (Scopus)

Abstract

© 2014 Elsevier B.V. All rights reserved. The porous structure of anodic aluminium oxide (AAO) can be used in versatile applications such as a lubricant reservoir in self-lubricating systems. Such systems are subjected to biaxial loading, which can induce crack formation and propagation, ultimately leading to catastrophic mechanical failure. In this study, the mechanical and tribological behaviour of AAO, prepared from two different types of electrolytes (sulphuric and oxalic acids), are studied in detail. The electrolytic conditions are adjusted to render highly tuneable average pore diameters (between 16 and 75 nm), with porosity levels ranging from 9% to 65%. Well-ordered porous AAO are produced by two-step anodization at rather low temperatures. Mechanical properties, mainly hardness and Young's modulus, are investigated using nanoindentation. Both the porosity degree and the composition of the electrolytic baths used to prepare the AAO have an influence on the mechanical properties. Ball-on-flat configuration was used to estimate the tribological behaviour under dry conditions. No major cracks were observed by scanning electron microscopy, neither after indentation or fretting tests. In the running-in period of tribology experiments the pores were filled with debris. This was followed by the formation of a highly adherent tribolayer e a third body consisting of fine worn particles originated from both the sample and the counterbody. Pore diameter and porosity percentage are found to strongly affect hardness and Young's modulus, but they do not have a major effect on the frictional behaviour.
Original languageEnglish
Pages (from-to)887-895
JournalMaterials Chemistry and Physics
Volume148
Issue number3
DOIs
Publication statusPublished - 1 Jan 2014

Keywords

  • Coatings
  • Mechanical properties
  • Nanostructures
  • Oxides
  • Tribology and wear

Fingerprint

Dive into the research topics of 'Mechanical and frictional behaviour of nano-porous anodized aluminium'. Together they form a unique fingerprint.

Cite this