Magnetic Bead Handling Using a Paper-Based Device for Quantitative Point-of-Care Testing

Kevin Arias-Alpízar, Ana Sánchez-Cano, Judit Prat-Trunas, Elena Sulleiro Igual, Pau Bosch-Nicolau, Fernando Salvador, Inés Oliveira-Souto, Israel Molina Romero, Adrián Sánchez-Montalvá, Eva Baldrich Rubio

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)

Abstract

Microfluidic paper-based analytical devices (μPADs) have been extensively proposed as ideal tools for point-of-care (POC) testing with minimal user training and technical requirements. However, most μPADs use dried bioreagents, which complicate production, reduce device reproducibility and stability, and require transport and storage under temperature and humidity-controlled conditions. In this work, we propose a μPAD produced using an affordable craft-cutter and stored at room temperature, which is used to partially automate a single-step colorimetric magneto-immunoassay. As a proof-of-concept, the μPAD has been applied to the quantitative detection of Plasmodium falciparum lactate dehydrogenase (Pf-LDH), a biomarker of malaria infection. In this system, detection is based on a single-step magneto-immunoassay that consists of a single 5-min incubation of the lysed blood sample with immuno-modified magnetic beads (MB), detection antibody, and an enzymatic signal amplifier (Poly-HRP). This mixture is then transferred to a single-piece paper device where, after on-chip MB magnetic concentration and washing, signal generation is achieved by adding a chromogenic enzyme substrate. The colorimetric readout is achieved by the naked eye or using a smartphone camera and free software for image analysis. This μPAD afforded quantitative Pf-LDH detection in <15 min, with a detection limit of 6.25 ng mL −1 when the result was interpreted by the naked eye and 1.4 ng mL −1 when analysed using the smartphone imaging system. Moreover, the study of a battery of clinical samples revealed concentrations of Pf-LDH that correlated with those provided by the reference ELISA and with better sensitivity than a commercial rapid diagnostic test (RDT). These results demonstrate that magneto-immunoassays can be partly automated by employing a μPAD, achieving a level of handling that approaches the requirements of POC testing.
Original languageEnglish
JournalBiosensors (Basel)
Volume12
DOIs
Publication statusPublished - 2022

Keywords

  • Immuno-modified magnetic beads
  • Low-cost assay automation
  • Malaria quantitative diagnosis
  • Paper-based diagnostic device
  • Point-of-care testing
  • Smartphone colorimetric detection

Fingerprint

Dive into the research topics of 'Magnetic Bead Handling Using a Paper-Based Device for Quantitative Point-of-Care Testing'. Together they form a unique fingerprint.

Cite this