TY - JOUR
T1 - Localized 1H-NMR spectroscopy in patients with fibromyalgia
T2 - A controlled study of changes in cerebral glutamate/glutamine, inositol, choline, and N-acetylaspartate
AU - Fayed, Nicolas
AU - Garcia-Campayo, Javier
AU - Magallón, Rosa
AU - Andrés-Bergareche, Helena
AU - Luciano, Juan V.
AU - Andres, Eva
AU - Beltrán, Julián
N1 - Funding Information:
We thank Prof. M. Sarasa of the University of Zaragoza for the LCModel software package acquired through grant SAF2006-13332 from the Spanish Ministry of Science. This study was possible thanks to grant PI07/90959, 'Eficacia del tratamiento farmacológico y psicológico de la catastrofización en pacientes con fibromialgia: un estudio controlado,' from the Instituto de Salud Carlos III of the Spanish Health Ministry.
PY - 2010/7/7
Y1 - 2010/7/7
N2 - Introduction: The purpose of this study was to investigate whether single-voxel (SV) proton magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), and diffusion tensor imaging (DTI) detected differences between fibromyalgia (FM) patients and healthy controls. We also searched for correlations between neuroimaging abnormalities and neuropsychological variables.Methods: Ten patients with FM and 10 gender- and age-matched control subjects were studied. A neuropsychological examination, DWI, DTI, and proton MRS were performed on the brain areas known to be associated with pain processing.Results: Compared with healthy controls, FM patients had significantly higher levels of glutamate + glutamine (Glx) (mean ± SD, 10.71 ± 0.50 arbitrary institutional units versus 9.89 ± 1.04; P = 0.049) and higher glutamate + glutamine/creatine (Glx/Cr) ratios (1.90 ± 0.12 versus 1.72 ± 0.23; P = 0.034) in the posterior gyrus. Myoinositol (Ins) levels of the right and left hippocampi were significantly lower in FM patients (4.49 ± 0.74 versus 5.17 ± 0.62; P = 0.008 and 4.91 ± 0.85 versus 6.09 ± 0.78; P = 0.004, respectively). In FM patients, decreased myoinositol/creatine (Ins/Cr) ratios were found in the left sensorimotor area (P = 0.05) and the left hippocampus (P = 0.002) and lower levels of choline (P = 0.019) and N-acetyl aspartate + N-acetyl aspartyl glutamate (NAA + NAG) (P = 0.034) in the left hippocampus. Significant correlations between depression, pain, and global function and the posterior gyrus Glx levels and Glx/Cr ratios were observed.Conclusions: Glx within the posterior gyrus could be a pathologic factor in FM. Hippocampal dysfunction may be partially responsible for the depressive symptoms of FM. Additional studies with larger samples are required to confirm these preliminary data.
AB - Introduction: The purpose of this study was to investigate whether single-voxel (SV) proton magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), and diffusion tensor imaging (DTI) detected differences between fibromyalgia (FM) patients and healthy controls. We also searched for correlations between neuroimaging abnormalities and neuropsychological variables.Methods: Ten patients with FM and 10 gender- and age-matched control subjects were studied. A neuropsychological examination, DWI, DTI, and proton MRS were performed on the brain areas known to be associated with pain processing.Results: Compared with healthy controls, FM patients had significantly higher levels of glutamate + glutamine (Glx) (mean ± SD, 10.71 ± 0.50 arbitrary institutional units versus 9.89 ± 1.04; P = 0.049) and higher glutamate + glutamine/creatine (Glx/Cr) ratios (1.90 ± 0.12 versus 1.72 ± 0.23; P = 0.034) in the posterior gyrus. Myoinositol (Ins) levels of the right and left hippocampi were significantly lower in FM patients (4.49 ± 0.74 versus 5.17 ± 0.62; P = 0.008 and 4.91 ± 0.85 versus 6.09 ± 0.78; P = 0.004, respectively). In FM patients, decreased myoinositol/creatine (Ins/Cr) ratios were found in the left sensorimotor area (P = 0.05) and the left hippocampus (P = 0.002) and lower levels of choline (P = 0.019) and N-acetyl aspartate + N-acetyl aspartyl glutamate (NAA + NAG) (P = 0.034) in the left hippocampus. Significant correlations between depression, pain, and global function and the posterior gyrus Glx levels and Glx/Cr ratios were observed.Conclusions: Glx within the posterior gyrus could be a pathologic factor in FM. Hippocampal dysfunction may be partially responsible for the depressive symptoms of FM. Additional studies with larger samples are required to confirm these preliminary data.
UR - http://www.scopus.com/inward/record.url?scp=77954265387&partnerID=8YFLogxK
U2 - 10.1186/ar3072
DO - 10.1186/ar3072
M3 - Article
C2 - 20609227
AN - SCOPUS:77954265387
VL - 12
JO - Arthritis Research and Therapy
JF - Arthritis Research and Therapy
SN - 1478-6354
IS - 4
M1 - R134
ER -