Knotting fractional-order knots with the polarization state of light

Emilio Pisanty, Gerard J. Machado, Verónica Vicuña-Hernández, Antonio Picón, Alessio Celi, Juan P. Torres, Maciej Lewenstein

Research output: Contribution to journalArticleResearch

52 Citations (Scopus)


© 2019, The Author(s), under exclusive licence to Springer Nature Limited. The fundamental polarization singularities of monochromatic light are normally associated with invariance under coordinated rotations: symmetry operations that rotate the spatial dependence of an electromagnetic field by an angle θ and its polarization by a multiple γθ of that angle. These symmetries are generated by mixed angular momenta of the form Jγ = L + γS, and they generally induce Möbius-strip topologies, with the coordination parameter γ restricted to integer and half-integer values. In this work we construct beams of light that are invariant under coordinated rotations for arbitrary rational γ, by exploiting the higher internal symmetry of ‘bicircular’ superpositions of counter-rotating circularly polarized beams at different frequencies. We show that these beams have the topology of a torus knot, which reflects the subgroup generated by the torus-knot angular momentum Jγ, and we characterize the resulting optical polarization singularity using third- and higher-order field moment tensors, which we experimentally observe using nonlinear polarization tomography.
Original languageEnglish
Pages (from-to)569-574
JournalNature Photonics
Publication statusPublished - 1 Aug 2019


Dive into the research topics of 'Knotting fractional-order knots with the polarization state of light'. Together they form a unique fingerprint.

Cite this