Abstract
The fundamental polarization singularities of monochromatic light are normally associated with invariance under coordinated rotations: symmetry operations that rotate the spatial dependence of an electromagnetic field by an angle θ and its polarization by a multiple γθ of that angle. These symmetries are generated by mixed angular momenta of the form Jγ = L + γS, and they generally induce Möbius-strip topologies, with the coordination parameter γ restricted to integer and half-integer values. In this work we construct beams of light that are invariant under coordinated rotations for arbitrary rational γ, by exploiting the higher internal symmetry of ‘bicircular’ superpositions of counter-rotating circularly polarized beams at different frequencies. We show that these beams have the topology of a torus knot, which reflects the subgroup generated by the torus-knot angular momentum Jγ, and we characterize the resulting optical polarization singularity using third- and higher-order field moment tensors, which we experimentally observe using nonlinear polarization tomography.
Original language | English |
---|---|
Article number | 13 |
Pages (from-to) | 569-574 |
Number of pages | 6 |
Journal | Nature Photonics |
Volume | 13 |
Issue number | 8 |
DOIs | |
Publication status | Published - 10 Jun 2019 |
Fingerprint
Dive into the research topics of 'Knotting fractional-order knots with the polarization state of light'. Together they form a unique fingerprint.Datasets
-
Code and data for 'Knotting fractional-order knots with the polarization state of light'
Pisanty, E. (Contributor), Machado, G. J. (Contributor), Vicuña-Hernández, V. (Contributor), Picón, A. (Contributor), Celi, A. (Contributor), Torres, J. P. (Contributor) & Lewenstein, M. (Contributor), Zenodo, 14 Aug 2018
DOI: 10.5281/zenodo.2649391, https://zenodo.org/record/2649391
Dataset