Investigation of an acid-base and redox molecular switch: From bulk to the single-molecule level

Research output: Contribution to journalArticleResearchpeer-review

36 Citations (Scopus)

Abstract

In this work we investigate a new fluorescent molecular switch based on the interconversion between the fluorescent zwitterionic form (ZW1) and the non-fluorescent anionic state (MC2) of a spirocyclic Meisenheimer complex of 1,3,5-trinitrobenzene. Density functional theory molecular orbital calculations reveal that photo-induced electron transfer from a guanidine group to the trinitrocyclohexadiene fluorophore of the complex quenches the emission from MC2. Protonation, as well as coordination of other Lewiscids to the guanidine group, suppress the quenching mechanism and allow the complex to fluoresce. In agreement with the calculations, reversible on-off fluorescence switching of the ZW1-MC2 bulk system occurs by protonation-deprotonation of the guanidine moiety upon acid-base addition. Interestingly, spectroelectrochemical ensemble measurements show that switching of the ZW1-MC2 pair can also be attained electrochemically, thus unraveling the versatile functioning of this system. The ultimate limit of monitoring the reversible on-off operation of individual switch molecules is reached by means of single-molecule fluorescence spectroscopy, which demonstrates the potential of the ZW1-MC2 system to be used as a true single-molecule switch on the nanometer scale. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.
Original languageEnglish
Pages (from-to)7066-7074
JournalChemistry - A European Journal
Volume13
Issue number25
DOIs
Publication statusPublished - 5 Sep 2007

Keywords

  • Electron transfer
  • Meisenheimer complex
  • Molecular switch
  • Single-molecule studies
  • Zwitterionic complex

Fingerprint Dive into the research topics of 'Investigation of an acid-base and redox molecular switch: From bulk to the single-molecule level'. Together they form a unique fingerprint.

Cite this