Interaction between Ruthenium Oxide Surfaces and Water Molecules. Effect of Surface Morphology and Water Coverage

Research output: Contribution to journalArticleResearch

9 Citations (Scopus)


Copyright © 2018 American Chemical Society. RuO 2 is a conducting transition metal oxide that has unique redox properties to be used as heterogeneous catalyst for oxidation reactions as well as in electrocatalysis. Furthermore, it has been reported to be an excellent catalyst for the oxygen evolution reaction, a key step for obtaining energy from water through environmentally friendly processes. In this context, a detailed knowledge of the RuO 2 -water interface is important for a better understanding of the electrochemical process, the water oxidation reaction and some oxidative reactions involving RuO 2 . Here, we use periodic boundary condition DFT (PBE-D2) calculations to analyze the influence of the surface morphology and water coverage in the adsorption energies and degree of water deprotonation. We have considered the four nonpolar ((110), (011), (100), and (001)) most relevant surfaces and three degrees of water coverage: isolated molecules, half monolayer and full monolayer. Results indicate that three effects are crucial for determining the adsorption energy and degree of deprotonation: (i) the intrinsic acidity of the unsaturated ruthenium cations and the intrinsic basicity of the O br centers; (ii) the presence of strong cooperative effects, already observed in the half monolayer situation of the (110) and (011) surfaces that favors 50% of deprotonation and leads to the formation of the (H 3 O 2 ) motif; and (iii) an increase of the surface O br basicity by the adsorption of water molecules on Ru centers bonded to O br groups, which is more important in the (100) and (001) surfaces.
Original languageEnglish
Pages (from-to)7786-7798
JournalJournal of Physical Chemistry C
Publication statusPublished - 4 Apr 2019


Dive into the research topics of 'Interaction between Ruthenium Oxide Surfaces and Water Molecules. Effect of Surface Morphology and Water Coverage'. Together they form a unique fingerprint.

Cite this