Integrated modeling of biogeochemical reactions and associated isotope fractionations at batch scale: A tool to monitor enhanced biodenitrification applications

Paula Rodríguez-Escales, Boris M. van Breukelen, Georgina Vidal-Gavilan, Albert Soler, Albert Folch

    Research output: Contribution to journalArticleResearchpeer-review

    18 Citations (Scopus)

    Abstract

    Enhanced in-situ biodenitrification (EIB) is a potential technology for remediating nitrate-polluted groundwater. EIB aims to create optimal biodenitrification conditions through the addition of carbon sources, enabling the autochthonous microbial community to degrade nitrate via different redox pathways. Biogeochemical numerical models are useful tools for predicting and designing such biodenitrification applications. Compound-specific stable isotope analysis (CSIA) is another valuable method for determining the degree of nitrate transformation. Therefore, incorporating isotope fractionation in biogeochemical models combines the two tools and is a key step in the development of reactive transport models of EIB under field conditions. In this work, we developed such an integrated model using the Phreeqc code and calibrated the model with batch scale experimental data using either ethanol or glucose as external carbon sources. The model included the following: microbiological processes -exogenous and endogenous nitrate respiration coupled to microbial growth and decay; geochemical processes -precipitation or dissolution of calcite; and isotopic fractionation -δ15N-NO3-, δ18O-NO3-, and δ13C-DIC, incorporating the full δ13C isotope geochemistry involved in EIB. The modeled results fit well with the hydrochemical and isotopic experimental data. The model also incorporated nitrite accumulation observed during the glucose experiment. The biogeochemical model indicates that, depending on the added carbon source, calcite precipitates (using ethanol) or dissolves (using glucose). In both cases, changes in hydraulic conductivity can be induced for actual and long-term EIB applications. The incorporation of isotope fractionation in the model better enables to account for other natural attenuation processes, such as dilution and dispersion, in EIB applications at field scale. Both calibrated enrichment factors (+8‰ for ethanol and +17‰ for glucose) suggest that an inverse fractionation effect occurred (in which the heavy isotope reacts faster than the light isotope) during their oxidation. © 2013 Elsevier B.V.
    Original languageEnglish
    Pages (from-to)20-29
    JournalChemical Geology
    Volume365
    DOIs
    Publication statusPublished - 4 Feb 2014

    Keywords

    • Biodenitrification
    • Calcite precipitation-dissolution
    • Carbon isotopes
    • Nitrate isotopes
    • Phreeqc

    Fingerprint

    Dive into the research topics of 'Integrated modeling of biogeochemical reactions and associated isotope fractionations at batch scale: A tool to monitor enhanced biodenitrification applications'. Together they form a unique fingerprint.

    Cite this