Abstract
© 2015 Esmon Publicidad. Background and Objective: Patients with persistent asthma have different inflammatory phenotypes. The electronic nose is a new technology capable of distinguishing volatile organic compound (VOC) breath-prints in exhaled breath. The aim of the study was to investigate the capacity of electronic nose breath-print analysis to discriminate between different inflammatory asthma phenotypes (eosinophilic, neutrophilic, paucigranulocytic) determined by induced sputum in patients with persistent asthma. Methods: Fifty-two patients with persistent asthma were consecutively included in a cross-sectional proof-of-concept study. Inflammatory asthma phenotypes (eosinophilic, neutrophilic and paucigranulocytic) were recognized by inflammatory cell counts in induced sputum. VOC breath-prints were analyzed using the electronic nose Cyranose 320 and assessed by discriminant analysis on principal component reduction, resulting in cross-validated accuracy values. Receiver operating characteristic (ROC) curves were calculated. Results: VOC breath-prints were different in eosinophilic asthmatics compared with both neutrophilic asthmatics (accuracy 73%; P=.008; area under ROC, 0.92) and paucigranulocytic asthmatics (accuracy 74%; P=.004; area under ROC, 0.79). Likewise, neutrophilic and paucigranulocytic breath-prints were also different (accuracy 89%; P=.001; area under ROC, 0.88). Conclusion: An electronic nose can discriminate inflammatory phenotypes in patients with persistent asthma in a regular clinical setting. ClinicalTrials.gov identifier: NCT02026336.
Original language | English |
---|---|
Pages (from-to) | 431-437 |
Journal | Journal of Investigational Allergology and Clinical Immunology |
Volume | 25 |
Issue number | 6 |
Publication status | Published - 1 Jan 2015 |
Keywords
- Asthma
- Electronic nose
- Inflammation
- Volatile organic compounds