TY - JOUR
T1 - Improving the classification of brain tumors in mice with perturbation enhanced (PE)-MRSI
AU - Simões, Rui Vasco
AU - Ortega-Martorell, Sandra
AU - Delgado-Goñi, Teresa
AU - Fur, Yann Le
AU - Pumarola, Martí
AU - Candiota, Ana Paula
AU - Martín, Juana
AU - Stoyanova, Radka
AU - Cozzone, Patrick J.
AU - Julià-Sapé, Margarida
AU - Arús, Carles
PY - 2012/2
Y1 - 2012/2
N2 - Classifiers based on statistical pattern recognition analysis of MRSI data are becoming important tools for the non-invasive diagnosis of human brain tumors. Here we investigate the potential interest of perturbation-enhanced MRSI (PE-MRSI), in this case acute hyperglycemia, for improving the discrimination between mouse brain MRS patterns of glioblastoma multiforme (GBM), oligodendroglioma (ODG), and non-tumor brain parenchyma (NT). Six GBM-bearing mice and three ODG-bearing mice were scanned at 7 Tesla by PRESS-MRSI with 12 and 136 ms echo-time, during euglycemia (Eug) and also during induced acute hyperglycemia (Hyp), generating altogether four datasets per animal (echo time + glycemic condition): 12Eug, 136Eug, 12Hyp, and 136Hyp. For classifier development all spectral vectors (spv) selected from the MRSI matrix were unit length normalized (UL2) and used either as a training set (76 GBM spv, four mice; 70 ODG spv, two mice; 54 NT spv) or as an independent testing set (61 GBM spv, two mice; 31 ODG, one mouse; 23 NT spv). All Fisher's LDA classifiers obtained were evaluated as far as their descriptive performance - correctly classified cases of the training set (bootstrapping) - and predictive accuracy - balanced error rate of independent testing set classification. MRSI-based classifiers at 12Hyp were consistently more efficient in separating GBM, ODG, and NT regions, with overall accuracies always >80% and up to 95-96%; remaining classifiers were within the 48-85% range. This was also confirmed by user-independent selection of training and testing sets, using leave-one-out (LOO). This highlights the potential interest of perturbation-enhanced MRSI protocols for improving the non-invasive characterization of preclinical brain tumors.
AB - Classifiers based on statistical pattern recognition analysis of MRSI data are becoming important tools for the non-invasive diagnosis of human brain tumors. Here we investigate the potential interest of perturbation-enhanced MRSI (PE-MRSI), in this case acute hyperglycemia, for improving the discrimination between mouse brain MRS patterns of glioblastoma multiforme (GBM), oligodendroglioma (ODG), and non-tumor brain parenchyma (NT). Six GBM-bearing mice and three ODG-bearing mice were scanned at 7 Tesla by PRESS-MRSI with 12 and 136 ms echo-time, during euglycemia (Eug) and also during induced acute hyperglycemia (Hyp), generating altogether four datasets per animal (echo time + glycemic condition): 12Eug, 136Eug, 12Hyp, and 136Hyp. For classifier development all spectral vectors (spv) selected from the MRSI matrix were unit length normalized (UL2) and used either as a training set (76 GBM spv, four mice; 70 ODG spv, two mice; 54 NT spv) or as an independent testing set (61 GBM spv, two mice; 31 ODG, one mouse; 23 NT spv). All Fisher's LDA classifiers obtained were evaluated as far as their descriptive performance - correctly classified cases of the training set (bootstrapping) - and predictive accuracy - balanced error rate of independent testing set classification. MRSI-based classifiers at 12Hyp were consistently more efficient in separating GBM, ODG, and NT regions, with overall accuracies always >80% and up to 95-96%; remaining classifiers were within the 48-85% range. This was also confirmed by user-independent selection of training and testing sets, using leave-one-out (LOO). This highlights the potential interest of perturbation-enhanced MRSI protocols for improving the non-invasive characterization of preclinical brain tumors.
UR - http://www.scopus.com/inward/record.url?scp=84863049407&partnerID=8YFLogxK
U2 - 10.1039/c2ib00079b
DO - 10.1039/c2ib00079b
M3 - Artículo
C2 - 22193155
AN - SCOPUS:84863049407
SN - 1757-9694
VL - 4
SP - 183
EP - 191
JO - Integrative Biology
JF - Integrative Biology
IS - 2
ER -