Improving nested case-control studies to conduct a full competing-risks analysis for nosocomial infections

Derek Hazard, Martin Schumacher, Mercedes Palomar-Martinez, Francisco Alvarez-Lerma, Pedro Olaechea-Astigarraga, Martin Wolkewitz

Research output: Contribution to journalArticleResearch

1 Citation (Scopus)

Abstract

© 2018 by The Society for Healthcare Epidemiology of America. All rights reserved. Objective Competing risks are a necessary consideration when analyzing risk factors for nosocomial infections (NIs). In this article, we identify additional information that a competing risks analysis provides in a hospital setting. Furthermore, we improve on established methods for nested case-control designs to acquire this information.Methods Using data from 2 Spanish intensive care units and model simulations, we show how controls selected by time-dynamic sampling for NI can be weighted to perform risk-factor analysis for death or discharge without infection. This extension not only enables hazard rate analysis for the competing risk, it also enables prediction analysis for NI.Results The estimates acquired from the extension were in good agreement with the results from the full (real and simulated) cohort dataset. The reduced dataset results averted any false interpretation common in a competing-risks setting.Conclusions Using additional information that is routinely collected in a hospital setting, a nested case-control design can be successfully adapted to avoid a competing risks bias. Furthermore, this adapted method can be used to reanalyze past nested case-control studies to enhance their findings.
Original languageEnglish
Pages (from-to)1196-1201
JournalInfection Control and Hospital Epidemiology
Volume39
DOIs
Publication statusPublished - 1 Oct 2018

Fingerprint Dive into the research topics of 'Improving nested case-control studies to conduct a full competing-risks analysis for nosocomial infections'. Together they form a unique fingerprint.

Cite this