TY - JOUR
T1 - Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloying
AU - González, S.
AU - Pellicer, E.
AU - Fornell, J.
AU - Blanquer, A.
AU - Barrios, L.
AU - Ibáñez, E.
AU - Solsona, P.
AU - Suriñach, S.
AU - Baró, M. D.
AU - Nogués, C.
AU - Sort, J.
PY - 2012/2/1
Y1 - 2012/2/1
N2 - The influence of partial substitution of Mg by Pd on the microstructure, mechanical properties and corrosion behaviour of Mg 72-xZn 23Ca 5Pd x(x=0, 2 and 6 at.%) alloys, synthesized by copper mould casting, is investigated. While the Mg 72Zn 23Ca 5 alloy is mainly amorphous, the addition of Pd decreases the glass-forming ability, thus favouring the formation of crystalline phases. From a mechanical viewpoint, the hardness increases with the addition of Pd, from 2.71GPa for x=0 to 3.9GPa for x=6, mainly due to the formation of high-strength phases. In turn, the wear resistance is maximized for an intermediate Pd content (i.e., Mg 70Zn 23Ca 5Pd 2). Corrosion tests in a simulated body fluid (Hank's solution) indicate that Pd causes a shift in the corrosion potential towards more positive values, thus delaying the biodegradability of this alloy. Moreover, since the cytotoxic studies with mouse preosteoblasts do not show dead cells after culturing for 27h, these alloys are potential candidates to be used as biomaterials. © 2011 Elsevier Ltd.
AB - The influence of partial substitution of Mg by Pd on the microstructure, mechanical properties and corrosion behaviour of Mg 72-xZn 23Ca 5Pd x(x=0, 2 and 6 at.%) alloys, synthesized by copper mould casting, is investigated. While the Mg 72Zn 23Ca 5 alloy is mainly amorphous, the addition of Pd decreases the glass-forming ability, thus favouring the formation of crystalline phases. From a mechanical viewpoint, the hardness increases with the addition of Pd, from 2.71GPa for x=0 to 3.9GPa for x=6, mainly due to the formation of high-strength phases. In turn, the wear resistance is maximized for an intermediate Pd content (i.e., Mg 70Zn 23Ca 5Pd 2). Corrosion tests in a simulated body fluid (Hank's solution) indicate that Pd causes a shift in the corrosion potential towards more positive values, thus delaying the biodegradability of this alloy. Moreover, since the cytotoxic studies with mouse preosteoblasts do not show dead cells after culturing for 27h, these alloys are potential candidates to be used as biomaterials. © 2011 Elsevier Ltd.
KW - Biomaterial
KW - Corrosion
KW - Elastic properties
KW - Nanoindentation
U2 - https://doi.org/10.1016/j.jmbbm.2011.09.014
DO - https://doi.org/10.1016/j.jmbbm.2011.09.014
M3 - Article
SN - 1751-6161
VL - 6
SP - 53
EP - 62
JO - Journal of the Mechanical Behavior of Biomedical Materials
JF - Journal of the Mechanical Behavior of Biomedical Materials
ER -