Implementation of the Random Forest method for the Imaging Atmospheric Cherenkov Telescope MAGIC

J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada, M. Asensio, C. Baixeras, J. A. Barrio, H. Bartko, D. Bastieri, J. Becker, W. Bednarek, K. Berger, C. Bigongiari, A. Biland, R. K. Bock, P. Bordas, V. Bosch-Ramon, T. Bretz, I. BritvitchM. Camara, E. Carmona, A. Chilingarian, S. Ciprini, J. A. Coarasa, S. Commichau, J. L. Contreras, J. Cortina, M. T. Costado, V. Curtef, V. Danielyan, F. Dazzi, A. De Angelis, C. Delgado, R. de los Reyes, B. De Lotto, E. Domingo-Santamaría, D. Dorner, M. Doro, M. Errando, M. Fagiolini, D. Ferenc, E. Fernández, R. Firpo, J. Flix, M. V. Fonseca, L. Font, M. Fuchs, N. Galante, R. J. García-López, M. Garczarczyk, M. Gaug, M. Giller, F. Goebel, D. Hakobyan, M. Hayashida, T. Hengstebeck, A. Herrero, D. Höhne, J. Hose, S. Huber, C. C. Hsu, P. Jacon, T. Jogler, R. Kosyra, D. Kranich, R. Kritzer, A. Laille, E. Lindfors, S. Lombardi, F. Longo, J. López, M. López, E. Lorenz, P. Majumdar, G. Maneva, K. Mannheim, M. Mariotti, M. Martínez, D. Mazin, C. Merck, M. Meucci, M. Meyer, J. M. Miranda, R. Mirzoyan, S. Mizobuchi, A. Moralejo, D. Nieto, K. Nilsson, J. Ninkovic, E. Oña-Wilhelmi, N. Otte, I. Oya, M. Panniello, R. Paoletti, J. M. Paredes, M. Pasanen, D. Pascoli, F. Pauss, R. Pegna

Research output: Contribution to journalArticleResearchpeer-review

146 Citations (Scopus)

Abstract

The paper describes an application of the tree classification method Random Forest (RF), as used in the analysis of data from the ground-based gamma telescope MAGIC. In such telescopes, cosmic gamma-rays are observed and have to be discriminated against a dominating background of hadronic cosmic-ray particles. We describe the application of RF for this gamma/hadron separation. The RF method often shows superior performance in comparison with traditional semi-empirical techniques. Critical issues of the method and its implementation are discussed. An application of the RF method for estimation of a continuous parameter from related variables, rather than discrete classes, is also discussed. © 2008.
Original languageEnglish
Pages (from-to)424-432
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume588
Issue number3
DOIs
Publication statusPublished - 11 Apr 2008

Keywords

  • Classification
  • Decision tree
  • Discrimination

Fingerprint Dive into the research topics of 'Implementation of the Random Forest method for the Imaging Atmospheric Cherenkov Telescope MAGIC'. Together they form a unique fingerprint.

  • Cite this

    Albert, J., Aliu, E., Anderhub, H., Antoranz, P., Armada, A., Asensio, M., Baixeras, C., Barrio, J. A., Bartko, H., Bastieri, D., Becker, J., Bednarek, W., Berger, K., Bigongiari, C., Biland, A., Bock, R. K., Bordas, P., Bosch-Ramon, V., Bretz, T., ... Pegna, R. (2008). Implementation of the Random Forest method for the Imaging Atmospheric Cherenkov Telescope MAGIC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 588(3), 424-432. https://doi.org/10.1016/j.nima.2007.11.068