Hybrid schemes based on quantum mechanics/molecular mechanics simulations: Goals to success, problems, and perspectives

Silvia Ferrer, Javier Ruiz-Pernía, Sergio Martí, Vicent Moliner, Iñaki Tuñón, Juan Bertrán, Juan Andrés

    Research output: Chapter in BookChapterResearchpeer-review

    20 Citations (Scopus)


    The development of characterization techniques, advanced synthesis methods, as well as molecular modeling has transformed the study of systems in a well-established research field. The current research challenges in biocatalysis and biotransformation evolve around enzyme discovery, design, and optimization. How can we find or create enzymes that catalyze important synthetic reactions, even reactions that may not exist in nature? What is the source of enzyme catalytic power? To answer these and other related questions, the standard strategies have evolved from trial-and-error methodologies based on chemical knowledge, accumulated experience, and common sense into a clearly multidisciplinary science that allows one to reach the molecular design of tailor-made enzyme catalysts. This is even more so when one refers to enzyme catalysts, for which the detailed structure and composition are known and can be manipulated to introduce well-defined residues which can be implicated in the chemical rearrangements taking place in the active site. The methods and techniques of theoretical and computational chemistry are becoming more and more important in both understanding the fundamental biological roles of enzymes and facilitating their utilization in biotechnology. Improvement of the catalytic function of enzymes is important from scientific and industrial viewpoints, and to put this fact in the actual perspective as well as the potentialities, we recommend the very recent report of Sanderson [Sanderson, K. (2011). Chemistry: enzyme expertise. Nature471, 397.]. Great fundamental advances have been made toward the ab initio design of enzyme catalysts based on molecular modeling. This has been based on the molecular mechanistic knowledge of the reactions to be catalyzed, together with the development of advanced synthesis and characterization techniques. The corresponding molecular mechanism can be studied by means of powerful quantum chemical calculations. The catalytic active site can be optimized to improve the transition state analogues (TSA) and to enhance the catalytic activity, even improve the active site to favor a desired direction of some promiscuous enzymes. In this chapter, we give a brief introduction, the state of the art, and future prospects and implications of enzyme design. Current computational tools to assist experimentalists for the design and engineering of proteins with desired catalytic properties are described. The interplay between enzyme design, molecular simulations, and experiments will be presented to emphasize the interdisciplinary nature of this research field. This text highlights the recent advances and examples selected from our laboratory are shown, of how the applications of these tools are a first attempt to de novo design of protein active sites. Identification of neutral/advantageous/deleterious mutation platforms can be exploited to penetrate some of Nature's closely guarded secrets of chemical reactivity. In this chapter, we give a brief introduction, the state of the art, and future prospects and implications of enzyme design. The first part describes briefly how the molecular modeling is carried out. Then, we discuss the requirements of hybrid quantum mechanical/molecular mechanics molecular dynamics (QM/MM MD) simulations, analyzing what are the basis of these theoretical methodologies, how we can use them with a view to its application in the study of enzyme catalysis, and what are the best methodologies for assessing its catalytic potential. In the second part, we focus on some selected examples, taking as a common guide the chorismate to prephenate rearrangement, studying the corresponding molecular mechanism in vacuo, in solution and in an enzyme environment. In addition, examples involving catalytic antibodies (CAs) and promiscuous enzymes will be presented. Finally, a special emphasis is made to provide some hints about the logical evolution that can be anticipated in this research field. Moreover, it helps in understanding the open directions in this area of knowledge and highlights the importance of computational approaches in discovering specific drugs and the impact on the rational design of tailor-made enzymes. © 2011 Elsevier Inc.
    Original languageEnglish
    Title of host publicationAdvances in Protein Chemistry and Structural Biology
    Number of pages61
    Publication statusPublished - 1 Jan 2011

    Fingerprint Dive into the research topics of 'Hybrid schemes based on quantum mechanics/molecular mechanics simulations: Goals to success, problems, and perspectives'. Together they form a unique fingerprint.

    Cite this