TY - JOUR
T1 - Historical record of Corallium rubrum and its changing carbon sequestration capacity
T2 - A meta-analysis from the North Western Mediterranean
AU - Mallo, Miguel
AU - Ziveri, Patrizia
AU - Reyes-García, Victoria
AU - Rossi, Sergio
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Background There is a scarcity of long time-span and geographically wide research on the health status of Corallium rubrum, including limited research on its historical ecology and carbon sequestration capacity. Objectives To reconstruct the temporal trends of the most reported C. rubrum population parameters in the Northwestern Mediterranean Sea and to determine the changes in total carbon sequestration by this species. Data sources Quantitative and qualitative, academic and grey documents were collected from scientific web browsers, scientific libraries, and requests to scientists. Study eligibility criteria Documents with original information of basal diameter, height and/or weight per colony, with a depth limit of 60 m in the Catalan and Ligurian Seas were analyzed. Synthesis methods We calculated yearly average values of C. rubrum biometric parameters, as well as estimated total weight, carbon flux, and carbon fixation in the structures of C. rubrum's colonies. Results In both study areas, the values of the selected morphometric parameters for C. rubrum decreased until the 1990s, then increased from the 2000s, with average values surpassing the levels of the 1960s (Ligurian Sea) or reaching levels slightly lower than those of the 1980s (Catalan Sea). The difference in carbon sequestered between the oldest (1960s: Ligurian Sea; 1970s: Catalan Sea) and the lowest (1990s) biomass value of colonies is nearly double. Limitations Quantitative data previous to the 1990s are very limited. Information on recent recovery trends in C. rubrum parameters is concentrated in a few areas and biased towards colonies in marine protected areas, with scarce quantitative information from colonies in other areas. Conclusions The halt in the C. rubrum decreasing trend coincided with the exhaustion of tree-like colonies and the first recovery response due to effective protection measures in some areas. Nevertheless, C. rubrum climate change mitigation capacity through carbon sequestration can be drastically reduced from its potential in only a few decades.
AB - Background There is a scarcity of long time-span and geographically wide research on the health status of Corallium rubrum, including limited research on its historical ecology and carbon sequestration capacity. Objectives To reconstruct the temporal trends of the most reported C. rubrum population parameters in the Northwestern Mediterranean Sea and to determine the changes in total carbon sequestration by this species. Data sources Quantitative and qualitative, academic and grey documents were collected from scientific web browsers, scientific libraries, and requests to scientists. Study eligibility criteria Documents with original information of basal diameter, height and/or weight per colony, with a depth limit of 60 m in the Catalan and Ligurian Seas were analyzed. Synthesis methods We calculated yearly average values of C. rubrum biometric parameters, as well as estimated total weight, carbon flux, and carbon fixation in the structures of C. rubrum's colonies. Results In both study areas, the values of the selected morphometric parameters for C. rubrum decreased until the 1990s, then increased from the 2000s, with average values surpassing the levels of the 1960s (Ligurian Sea) or reaching levels slightly lower than those of the 1980s (Catalan Sea). The difference in carbon sequestered between the oldest (1960s: Ligurian Sea; 1970s: Catalan Sea) and the lowest (1990s) biomass value of colonies is nearly double. Limitations Quantitative data previous to the 1990s are very limited. Information on recent recovery trends in C. rubrum parameters is concentrated in a few areas and biased towards colonies in marine protected areas, with scarce quantitative information from colonies in other areas. Conclusions The halt in the C. rubrum decreasing trend coincided with the exhaustion of tree-like colonies and the first recovery response due to effective protection measures in some areas. Nevertheless, C. rubrum climate change mitigation capacity through carbon sequestration can be drastically reduced from its potential in only a few decades.
UR - http://www.scopus.com/inward/record.url?scp=85076696142&partnerID=8YFLogxK
U2 - https://doi.org/10.1371/journal.pone.0223802
DO - https://doi.org/10.1371/journal.pone.0223802
M3 - Artículo
C2 - 31851690
AN - SCOPUS:85076696142
SN - 1932-6203
VL - 14
JO - PLoS ONE
JF - PLoS ONE
IS - 12
M1 - e0223802
ER -