Highly efficient aldol additions of DHA and DHAP to N-Cbz-amino aldehydes catalyzed by l-rhamnulose-1-phosphate and l-fuculose-1-phosphate aldolases in aqueous borate buffer

Xavier Garrabou, Jordi Calveras, Jesús Joglar, Teodor Parella, Jordi Bujons, Pere Clapés

    Research output: Contribution to journalArticleResearchpeer-review

    22 Citations (Scopus)

    Abstract

    Aldol addition reactions of dihydroxyacetone (DHA) to N-Cbz-amino aldehydes catalyzed by l-rhamnulose-1-phosphate aldolase (RhuA) in the presence of borate buffer are reported. High yields of aldol adduct (e.g. 70-90%) were achieved with excellent (>98:2 syn/anti) stereoselectivity for most S or R configured acceptors, which compares favorably to the reactions performed with DHAP. The stereochemical outcome was different and depended on the N-Cbz-amino aldehyde enantiomer: the S acceptors gave the syn (3R,4S) aldol adduct whereas the R ones gave the anti (3R,4R) diastereomer. Moreover, the tactical use of Cbz protecting group allows simple and efficient elimination of borate and excess of DHA by reverse phase column chromatography or even by simple extraction. This, in addition to the use of unphosphorylated donor nucleophile, makes a useful and expedient methodology for the synthesis of structurally diverse iminocyclitols. The performance of aldol additions of dihydroxyacetone phosphate (DHAP) to N-Cbz-amino aldehydes using RhuA and l-fuculose-1-phosphate aldolase (FucA) catalyst in borate buffer was also evaluated. For FucA catalysts, including FucA F131A, the initial velocity of the aldol addition reactions using DHAP were between 2 and 10 times faster and the yields between 1.5 and 4 times higher than those in triethanolamine buffer. In this case, the retroaldol velocities measured for some aldol adducts were lower than those without borate buffer indicating some trapping effect that could explain the improvement of yields. © The Royal Society of Chemistry 2011.
    Original languageEnglish
    Pages (from-to)8430-8436
    JournalOrganic and Biomolecular Chemistry
    Volume9
    Issue number24
    DOIs
    Publication statusPublished - 21 Dec 2011

    Fingerprint Dive into the research topics of 'Highly efficient aldol additions of DHA and DHAP to N-Cbz-amino aldehydes catalyzed by l-rhamnulose-1-phosphate and l-fuculose-1-phosphate aldolases in aqueous borate buffer'. Together they form a unique fingerprint.

    Cite this