Hierarchical boosting: A machine-learning framework to detect and classify hard selective sweeps in human populations

Marc Pybus, Pierre Luisi, Giovanni Marco Dall'Olio, Manu Uzkudun, Hafid Laayouni, Jaume Bertranpetit, Johannes Engelken

    Research output: Contribution to journalArticleResearchpeer-review

    43 Citations (Scopus)

    Abstract

    © The Author 2015. Published by Oxford University Press. All rights reserved. Motivation: Detecting positive selection in genomic regions is a recurrent topic in natural population genetic studies. However, there is little consistency among the regions detected in several genome-wide scans using different tests and/or populations. Furthermore, few methods address the challenge of classifying selective events according to specific features such as age, intensity or state (completeness). Results: We have developed a machine-learning classification framework that exploits the combined ability of some selection tests to uncover different polymorphism features expected under the hard sweep model, while controlling for population-specific demography. As a result, we achieve high sensitivity toward hard selective sweeps while adding insights about their completeness (whether a selected variant is fixed or not) and age of onset. Our method also determines the relevance of the individual methods implemented so far to detect positive selection under specific selective scenarios. We calibrated and applied the method to three reference human populations from The 1000 Genome Project to generate a genome-wide classification map of hard selective sweeps. This study improves detection of selective sweep by overcoming the classical selection versus no-selection classification strategy, and offers an explanation to the lack of consistency observed among selection tests when applied to real data. Very few signals were observed in the African population studied, while our method presents higher sensitivity in this population demography.
    Original languageEnglish
    Pages (from-to)3946-3952
    JournalBioinformatics
    Volume31
    Issue number24
    DOIs
    Publication statusPublished - 3 Jul 2015

    Fingerprint Dive into the research topics of 'Hierarchical boosting: A machine-learning framework to detect and classify hard selective sweeps in human populations'. Together they form a unique fingerprint.

    Cite this