Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes

Nabil Mehaba, Wellington Coloma-Garcia, Xavier Such, Gerardo Caja, Ahmed A.K. Salama

Research output: Contribution to journalArticleResearchpeer-review

10 Citations (Scopus)


Heat stress (HS) has a significant economic impact on the global dairy industry. However, the mechanisms by which HS negatively affects metabolism and milk synthesis in dairy ewes are not well defined. This study evaluated the production and metabolic variables in dairy ewes under controlled HS conditions. Eight Lacaune ewes (75.5 ± 3.2 kg of body weight; 165 ± 4 d of lactation; 2.31 ± 0.04 kg of milk per day) were submitted to thermoneutral (TN) or HS conditions in a crossover design (2 periods, 21 d each, 6-d transition). Conditions (day-night, 12–12 h; relative humidity; temperature-humidity index, THI) were: TN (15–20°C; 50 ± 5%; THI = 59–65) and HS (28–35°C; 45 ± 5%; THI = 75–83). Ewes were fed ad libitum and milked twice daily. Rectal temperature, respiratory rate, feed intake, water consumption, and milk yield were recorded daily. Milk and blood samples were collected weekly. Additionally, TN and HS ewes were exposed to glucose tolerance test, insulin tolerance test, and epinephrine challenge. Heat stress reduced feed intake (−11%), and increased rectal temperature (+0.77°C), respiratory rate (+90 breaths/min), and water consumption (+28%). Despite the reduced feed intake, HS ewes produced similar milk to TN ewes, but their milk contained lower fat (−1.7 points) and protein (−0.86 points). Further, HS milk tended to contain more somatic cells (+0.23 log points). Blood creatinine was greater in HS compared with TN, but no differences in blood glucose, nonesterified fatty acids, or urea were detected. When glucose was infused, TN and HS had similar insulin response, but higher glucose response (+85%) was detected in HS ewes. Epinephrine infusion resulted in lower nonesterified fatty acids response (−215%) in HS than TN ewes. Overall, HS decreased feed intake, but milk production was not affected. Heat stress caused metabolic adaptations that included increased body muscle degradation and reduced adipose tissue mobilization. These adaptations allowed ewes to spare glucose and to avoid reductions in milk yield.

Original languageEnglish
Pages (from-to)1099-1110
Number of pages12
JournalJournal of Dairy Science
Issue number1
Publication statusPublished - 1 Jan 2021


  • dairy ewes
  • heat stress
  • metabolism
  • milk production


Dive into the research topics of 'Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes'. Together they form a unique fingerprint.

Cite this