TY - JOUR
T1 - Glutamate regulates eEF1A phosphorylation and ribosomal transit time in Bergmann glial cells
AU - Barrera, Iliana
AU - Flores-Méndez, Marco
AU - Hernández-Kelly, Luisa C.
AU - Cid, Luis
AU - Huerta, Miriam
AU - Zinker, Samuel
AU - López-Bayghen, Esther
AU - Aguilera, José
AU - Ortega, Arturo
PY - 2010/12/1
Y1 - 2010/12/1
N2 - Glutamate, the major excitatory transmitter in the vertebrate brain, is involved in neuronal development and synaptic plasticity. Glutamatergic stimulation leads to differential gene expression patterns in neuronal and glial cells. A glutamate-dependent transcriptional control has been established for several genes. However, much less is known about the molecular events that modify the translational machinery upon exposure to this neurotransmitter. In a glial model of cerebellar cultured Bergmann cells, glutamate induces a biphasic effect on [ 35S]-methionine incorporation into proteins that suggests that the elongation phase of protein biosynthesis is the target for regulation. Indeed, after a 15min exposure to glutamate a transient increase in elongation factor 2 phosphorylation has been reported, an effect mediated through the activation of the elongation factor 2 kinase.In this contribution, we sought to characterize the phosphorylation status of the eukaryotic elongation factor 1A (eEF1A) and the ribosomal transit time under glutamate exposure. A dose-dependent increase in eEF1A phosphorylation was found after a 60min glutamate treatment; this phenomenon is Ca 2+/CaM dependent, blocked with Src and phosphatidyl-inositol 3-kinase inhibitors and with rapamicyn. Concomitantly, the ribosomal transit time was increased with a 15min glutamate exposure. After 60 more minutes, the average time used by the ribosomes to complete a polypeptide chain had almost returned to its initial level. These results strongly suggest that glutamate exerts an exquisite time-dependent translational control in glial cells, a process that might be critical for glia-neuron interactions. © 2010 Elsevier Ltd.
AB - Glutamate, the major excitatory transmitter in the vertebrate brain, is involved in neuronal development and synaptic plasticity. Glutamatergic stimulation leads to differential gene expression patterns in neuronal and glial cells. A glutamate-dependent transcriptional control has been established for several genes. However, much less is known about the molecular events that modify the translational machinery upon exposure to this neurotransmitter. In a glial model of cerebellar cultured Bergmann cells, glutamate induces a biphasic effect on [ 35S]-methionine incorporation into proteins that suggests that the elongation phase of protein biosynthesis is the target for regulation. Indeed, after a 15min exposure to glutamate a transient increase in elongation factor 2 phosphorylation has been reported, an effect mediated through the activation of the elongation factor 2 kinase.In this contribution, we sought to characterize the phosphorylation status of the eukaryotic elongation factor 1A (eEF1A) and the ribosomal transit time under glutamate exposure. A dose-dependent increase in eEF1A phosphorylation was found after a 60min glutamate treatment; this phenomenon is Ca 2+/CaM dependent, blocked with Src and phosphatidyl-inositol 3-kinase inhibitors and with rapamicyn. Concomitantly, the ribosomal transit time was increased with a 15min glutamate exposure. After 60 more minutes, the average time used by the ribosomes to complete a polypeptide chain had almost returned to its initial level. These results strongly suggest that glutamate exerts an exquisite time-dependent translational control in glial cells, a process that might be critical for glia-neuron interactions. © 2010 Elsevier Ltd.
KW - Bergmann glia
KW - Gene expression regulation
KW - Glutamate receptors
KW - Signaling
KW - Translation factors
U2 - 10.1016/j.neuint.2010.08.017
DO - 10.1016/j.neuint.2010.08.017
M3 - Article
VL - 57
SP - 795
EP - 803
IS - 7
ER -