Abstract
We consider the generalized van der Pol systems x˙=y,y˙=−x+(1−x2)f(y), where f∈R[y]. The classical van der Pol systems have f(y)=y. We first characterize when the origin of the generalized van der Pol systems is a center, and second we provide the global phase portraits in the Poincaré disc of the generalized van der Pol when f(y)=a1y+a2y2 for all a1,a2∈R.
Original language | English |
---|---|
Article number | 103213 |
Number of pages | 19 |
Journal | Bulletin des Sciences Mathematiques |
Volume | 182 |
DOIs | |
Publication status | Published - Feb 2023 |
Keywords
- Blow ups
- Center
- Lyapunov constant
- Poincaré compactification
- van der Pol systems