Abstract
In this paper, we work with a two-degree polynomial differential system in ℝ3 related with the canard phenomena. We show that this system is completely integrable, and we provide its global phase portrait in the Poincaré ball using the Poincaré-Lyapunov compactification. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg.
Original language | English |
---|---|
Pages (from-to) | 1103-1122 |
Journal | Annali di Matematica Pura ed Applicata |
Volume | 193 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Jan 2014 |
Keywords
- Benoît system
- Equilibrium point
- First integral
- Heteroclinic orbit
- Homoclinic orbit
- Invariant manifolds
- Poincaré compactification
- Poincaré sphere