Global dynamics of the Benoît system

Maurício Firmino Silva Lima, Jaume Llibre

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)

Abstract

In this paper, we work with a two-degree polynomial differential system in ℝ3 related with the canard phenomena. We show that this system is completely integrable, and we provide its global phase portrait in the Poincaré ball using the Poincaré-Lyapunov compactification. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg.
Original languageEnglish
Pages (from-to)1103-1122
JournalAnnali di Matematica Pura ed Applicata
Volume193
Issue number4
DOIs
Publication statusPublished - 1 Jan 2014

Keywords

  • Benoît system
  • Equilibrium point
  • First integral
  • Heteroclinic orbit
  • Homoclinic orbit
  • Invariant manifolds
  • Poincaré compactification
  • Poincaré sphere

Fingerprint Dive into the research topics of 'Global dynamics of the Benoît system'. Together they form a unique fingerprint.

Cite this