Genome-wide screening reveals the genetic basis of mammalian embryonic eye development

Fàtima Bosch i Tubert, Justine M. Chee, Louise Lanoue, Dave Clary, Kendall Higgins, Lynette Bower, Ann Flenniken, Ruolin Guo, David J. Adams, Robert E. Braun, Steve D. M. Brown, Hsian-Jean Genie Chin, Mary E. Dickinson, Chih-Wei Hsu, Michael Dobbie, Xiang Gao, Sanjeev Galande, Anne Grobler, Jason D. Heaney, Yann HeraultMartin Hrabe De Angelis, Fabio Mammano, Lauryl M. J. Nutter, Helen Parkinson, Chuan Qin, Toshi Shiroishi, Radislav Sedlacek, J-K Seong, Ying Xu, Brian Brooks, Colin McKerlie, K. C. Kent Lloyd, Henrik Westerberg, Ala Moshiri

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)


Background: Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. Results: Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. Conclusions: Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.
Original languageEnglish
Article number22
Number of pages15
JournalBMC Biology
Early online date3 Feb 2023
Publication statusPublished - 2023


  • Humans
  • Mice
  • Animals
  • Eye Abnormalities/genetics
  • Anophthalmos/genetics
  • Microphthalmos/genetics
  • Coloboma/genetics
  • Mice, Knockout
  • Embryonic Development/genetics
  • Phenotype
  • Eye
  • Mammals
  • MAC spectrum
  • Eye development
  • Mouse
  • IMPC
  • Serine-glycine biosynthesis


Dive into the research topics of 'Genome-wide screening reveals the genetic basis of mammalian embryonic eye development'. Together they form a unique fingerprint.

Cite this