Generalized Weierstrass integrability for the complex differential equations dy/dx = a(x)y4+b(x)y3+c(x)y2+d(x) y+e(x)

Jaume Llibre, Clàudia Valls

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)

Abstract

We characterize the differential equations of the form dy/dx=a(x)y 4+b(x)y3+c(x)y2+d(x)y+e(x), where a,b,c,d,e are meromorphic functions in the variable x, that admits either a generalized Weierstrass first integral or a generalized Weierstrass inverse integrating factor. © 2013 Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)836-841
JournalApplied Mathematics Letters
Volume26
Issue number8
DOIs
Publication statusPublished - 1 Aug 2013

Keywords

  • Complex differential equation
  • Weierstrass first integrals
  • Weierstrass inverse integrating factor

Fingerprint Dive into the research topics of 'Generalized Weierstrass integrability for the complex differential equations dy/dx = a(x)y<sup>4</sup>+b(x)y<sup>3</sup>+c(x)y<sup>2</sup>+d(x) y+e(x)'. Together they form a unique fingerprint.

Cite this