TY - JOUR
T1 - From amino alcohol to aminopolyol: One-pot multienzyme oxidation and aldol addition
AU - Pešić, Milja
AU - López, Carmen
AU - López-Santín, Josep
AU - Álvaro, Gregorio
PY - 2013/8/1
Y1 - 2013/8/1
N2 - In this work, the successful coupling of enzymatic oxidation and aldol addition reactions for the synthesis of a Cbz-aminopolyol from a Cbz-amino alcohol was achieved for the first time in a multienzymatic one-pot system. The two-step cascade reaction consisted of the oxidation of Cbz-ethanolamine to Cbz-glycinal catalyzed by chloroperoxidase from the fungus Caldariomyces fumago and aldol addition of dihydroxyacetone phosphate to Cbz-glycinal catalyzed by rhamnulose-1-phosphate aldolase expressed as a recombinant enzyme in Escherichia coli, yielding (3R,4S)-5-{[(benzyloxy)carbonyl]amino}-5-deoxy-1-O- phosphonopent-2-ulose. Tools of enzymatic immobilization, reactor configurations, and modification of the reaction medium were applied to highly increase the production of the target compound. While the use of soluble enzymes yielded only 23.6 % of Cbz-aminopolyol due to rapid enzyme inactivation, the use of immobilized ones permitted an almost complete consumption of Cbz-ethanolamine, reaching Cbz-aminopolyol yields of 69.1 and 71.9 % in the stirred-tank and packed-bed reactor, respectively. Furthermore, the reaction production was 18-fold improved when it was catalyzed by immobilized enzymes in the presence of 5 % (v/v) dioxane, reaching a value of 86.6 mM of Cbz-aminopoliol (31 g/L). © 2013 Springer-Verlag Berlin Heidelberg.
AB - In this work, the successful coupling of enzymatic oxidation and aldol addition reactions for the synthesis of a Cbz-aminopolyol from a Cbz-amino alcohol was achieved for the first time in a multienzymatic one-pot system. The two-step cascade reaction consisted of the oxidation of Cbz-ethanolamine to Cbz-glycinal catalyzed by chloroperoxidase from the fungus Caldariomyces fumago and aldol addition of dihydroxyacetone phosphate to Cbz-glycinal catalyzed by rhamnulose-1-phosphate aldolase expressed as a recombinant enzyme in Escherichia coli, yielding (3R,4S)-5-{[(benzyloxy)carbonyl]amino}-5-deoxy-1-O- phosphonopent-2-ulose. Tools of enzymatic immobilization, reactor configurations, and modification of the reaction medium were applied to highly increase the production of the target compound. While the use of soluble enzymes yielded only 23.6 % of Cbz-aminopolyol due to rapid enzyme inactivation, the use of immobilized ones permitted an almost complete consumption of Cbz-ethanolamine, reaching Cbz-aminopolyol yields of 69.1 and 71.9 % in the stirred-tank and packed-bed reactor, respectively. Furthermore, the reaction production was 18-fold improved when it was catalyzed by immobilized enzymes in the presence of 5 % (v/v) dioxane, reaching a value of 86.6 mM of Cbz-aminopoliol (31 g/L). © 2013 Springer-Verlag Berlin Heidelberg.
KW - Aminopolyol synthesis
KW - Enzymatic immobilization
KW - Enzymatic reactor configuration
KW - One-pot multienzymatic reaction
U2 - https://doi.org/10.1007/s00253-013-5011-x
DO - https://doi.org/10.1007/s00253-013-5011-x
M3 - Article
VL - 97
SP - 7173
EP - 7183
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
SN - 0175-7598
ER -