TY - JOUR
T1 - Fish pituitary show an active immune response after in vitro stimulation with Vibrio bacterin
AU - Liu, Xiaohong
AU - Khansari, Ali R.
AU - Tort, Lluis
PY - 2019/5/1
Y1 - 2019/5/1
N2 - © 2019 Elsevier Inc. The pituitary is a central organ of the neuro-endocrine system in fish that plays critical roles in various physiological processes, including stress response and behavior. Although it is known that pituitary hormones can have a direct or indirect influence stimulating or suppressing the immune responses, whether there is a local immune response in the pituitary or what is the effect of the immune stimulus on the pituitary function in fish is unknown. With the aim to understand the interaction between the immune responses and the endocrine axes at the pituitary level, particularly the Hypothalamus-Pituitary-Interrenal (HPI) axis, pituitaries of rainbow trout (Oncorhynchus mykiss) were cultured in vitro, incubated with bacterin, or bacterin plus CRH, cortisol, human recombinant IL1β or spleen medium for 3 h, and then genes involved in pro-inflammation (il1β il8, tnfα1, ifnγ), anti-inflammation (tgfβ1b, il10), immune modulation (mhcIIa, c3, mif) and stress response (crhbp, pomca, pomcb, gr1) were tested. Data showed that, incubation with bacterin alone and bacterin plus recombinant IL1β or CRH, as well as medium from bacterin treated spleen caused significant up-regulation of pro-inflammatory genes il1β and il8, while down-regulated the anti-inflammatory gene tgfβ1b. Besides, recombinant IL1β plus bacterin or alone caused raise of mhcIIa and tnfa, respectively. On the contrary, just a slight or even no alteration was recorded in the expression of stress response genes including crhbp, pomca, pomcb and gr1 in the in vitro cultured trout pituitary following this stimulation. These results suggest a local immune gene equipment in the pituitary of fish, and the potential for fish pituitary to develop both innate and adaptive immune responses, whereas that immune stimulation was not able to evoke a significant endocrine stress response in vitro.
AB - © 2019 Elsevier Inc. The pituitary is a central organ of the neuro-endocrine system in fish that plays critical roles in various physiological processes, including stress response and behavior. Although it is known that pituitary hormones can have a direct or indirect influence stimulating or suppressing the immune responses, whether there is a local immune response in the pituitary or what is the effect of the immune stimulus on the pituitary function in fish is unknown. With the aim to understand the interaction between the immune responses and the endocrine axes at the pituitary level, particularly the Hypothalamus-Pituitary-Interrenal (HPI) axis, pituitaries of rainbow trout (Oncorhynchus mykiss) were cultured in vitro, incubated with bacterin, or bacterin plus CRH, cortisol, human recombinant IL1β or spleen medium for 3 h, and then genes involved in pro-inflammation (il1β il8, tnfα1, ifnγ), anti-inflammation (tgfβ1b, il10), immune modulation (mhcIIa, c3, mif) and stress response (crhbp, pomca, pomcb, gr1) were tested. Data showed that, incubation with bacterin alone and bacterin plus recombinant IL1β or CRH, as well as medium from bacterin treated spleen caused significant up-regulation of pro-inflammatory genes il1β and il8, while down-regulated the anti-inflammatory gene tgfβ1b. Besides, recombinant IL1β plus bacterin or alone caused raise of mhcIIa and tnfa, respectively. On the contrary, just a slight or even no alteration was recorded in the expression of stress response genes including crhbp, pomca, pomcb and gr1 in the in vitro cultured trout pituitary following this stimulation. These results suggest a local immune gene equipment in the pituitary of fish, and the potential for fish pituitary to develop both innate and adaptive immune responses, whereas that immune stimulation was not able to evoke a significant endocrine stress response in vitro.
KW - Endocrine response
KW - Immune response
KW - In vitro response
KW - Pituitary
KW - Trout
KW - Vibrio bacterin
U2 - 10.1016/j.ygcen.2019.02.011
DO - 10.1016/j.ygcen.2019.02.011
M3 - Article
C2 - 30769010
VL - 275
SP - 65
EP - 72
JO - General and Comparative Endocrinology
JF - General and Comparative Endocrinology
SN - 0016-6480
ER -