TY - JOUR

T1 - Finite-size scaling of survival probability in branching processes

AU - Garcia-Millan, Rosalba

AU - Font-Clos, Francesc

AU - Corral, Álvaro

PY - 2015/4/20

Y1 - 2015/4/20

N2 - © 2015 American Physical Society. Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G(y)=2yey/(ey-1), with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.

AB - © 2015 American Physical Society. Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G(y)=2yey/(ey-1), with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.

U2 - 10.1103/PhysRevE.91.042122

DO - 10.1103/PhysRevE.91.042122

M3 - Article

VL - 91

JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

SN - 1539-3755

IS - 4

M1 - 042122

ER -