Fine-grained image classification and retrieval by combining visual and locally pooled textual features

Andres Mafla, Sounak Dey, Ali Furkan Biten, Lluis Gomez, Dimosthenis Karatzas

Research output: Chapter in BookChapterResearchpeer-review

23 Citations (Scopus)

Abstract

Text contained in an image carries high-level semantics that can be exploited to achieve richer image understanding. In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks such as image retrieval, fine-grained classification, and visual question answering. In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities. The novelty of the proposed model consists of the usage of a PHOC descriptor to construct a bag of textual words along with a Fisher Vector Encoding that captures the morphology of text. This approach provides a stronger multimodal representation for this task and as our experiments demonstrate, it achieves state-of-the-art results on two different tasks, fine-grained classification and image retrieval. The code of this model will be publicly available at1.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2939-2948
Number of pages10
ISBN (Electronic)9781728165530
DOIs
Publication statusPublished - Mar 2020

Publication series

NameProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020

Fingerprint

Dive into the research topics of 'Fine-grained image classification and retrieval by combining visual and locally pooled textual features'. Together they form a unique fingerprint.

Cite this