Fine architecture of bacterial inclusion bodies

M. Mar Carrió, Rafael Cubarsi, Antonio Villaverde

Research output: Contribution to journalArticleResearchpeer-review

117 Citations (Scopus)


The molecular organisation of protein aggregates, formed under physiological conditions, has been explored by in vitro trypsin treatment and electron microscopy analysis of bacterially produced inclusion bodies (IBs). The kinetic modelling of protein digestion has revealed variable proteolysis rates during protease exposure that are not compatible with a surface-restricted erosion of body particles but with a hyper-surfaced disintegration by selective enzymatic attack. In addition, differently resistant species of the IB proteins coexist within the particles, with half-lives that differ among them up to 50-fold. During in vivo protein incorporation throughout IB growth, a progressive increase of proteolytic resistance in all these species is observed, indicative of folding transitions and dynamic reorganisations of the body structure. Both the heterogeneity of the folding state and the time-dependent folding transitions undergone by the aggregated polypeptides indicate that IBs are not mere deposits of collapsed, inert molecules but plastic reservoirs of misfolded proteins that would allow, at least up to a certain extent, their in vivo recovery and transference to the soluble cell fraction. Copyright (C) 2000 Federation of European Biochemical Societies.
Original languageEnglish
Pages (from-to)7-11
JournalFEBS Letters
Publication statusPublished - 7 Apr 2000


  • Aggregation
  • Protein folding
  • Proteolysis
  • Recombinant protein
  • β-Galactosidase


Dive into the research topics of 'Fine architecture of bacterial inclusion bodies'. Together they form a unique fingerprint.

Cite this