Abstract
© 2016 American Chemical Society. The design and engineering of earth-abundant catalysts that are both cost-effective and highly active for water splitting are crucial challenges in a number of energy conversion and storage technologies. In this direction, herein we report the synthesis of Fe3O4@NiFexOy core-shell nanoheterostructures and the characterization of their electrocatalytic performance toward the oxygen evolution reaction (OER). Such nanoparticles (NPs) were produced by a two-step synthesis procedure involving the colloidal synthesis of Fe3O4 nanocubes with a defective shell and the posterior diffusion of nickel cations within this defective shell. Fe3O4@NiFexOy NPs were subsequently spin-coated over ITO-covered glass and their electrocatalytic activity toward water oxidation in carbonate electrolyte was characterized. Fe3O4@NiFexOy catalysts reached current densities above 1 mA/cm2 with a 410 mV overpotential and Tafel slopes of 48 mV/dec, which is among the best electrocatalytic performances reported in carbonate electrolyte.
Original language | English |
---|---|
Pages (from-to) | 29461-29469 |
Journal | ACS Applied Materials & Interfaces |
Volume | 8 |
Issue number | 43 |
DOIs | |
Publication status | Published - 2 Nov 2016 |
Keywords
- OER
- core-shell nanostructure
- electrocatalysts
- iron oxide
- magnetite
- nanoparticle
- oxygen evolution reaction