TY - JOUR
T1 - Facile synthesis of visible-light-driven Cu2O/BiVO4 composites for the photomineralization of recalcitrant pesticides
AU - Aguilera-Ruiz, E.
AU - De La Garza-Galván, M.
AU - Zambrano-Robledo, P.
AU - Ballesteros-Pacheco, J. C.
AU - Vazquez-Arenas, J.
AU - Peral, J.
AU - García-Pérez, U. M.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - © 2017 The Royal Society of Chemistry. Cu2O/BiVO4 composites with different Cu2O co-catalysts were synthesized by a simple impregnation method at 200 °C for 4 h under N2 atmosphere. The Cu2O powder was obtained through the chemical reduction of copper sulfate using different reducing reagents such as ascorbic acid, glucose or fructose. The as-synthesized samples were characterized by X-ray powder diffraction, scanning and transmission electron microscopies, UV-vis diffuse reflection absorption and electrochemical impedance spectroscopy. The photoactivities of the Cu2O/BiVO4 composites were evaluated in terms of the mineralization of 4-chlorophenol (4-CP) in aqueous solutions under visible-light irradiation. The role of experimental variables including the preparation method of the co-catalyst, catalyst concentration, and 4-chlorophenol initial concentration in the photocatalytic performance of Cu2O/BiVO4 catalysts was analyzed. Likewise, the viability to recover and reuse these photocatalysts was also tested. It was found that the complete abatement of 4-CP led to the formation of chlorocatechol (4-CC) without concomitantly involving the formation pathway of hydroquinone/p-benzoquinone, 4-CC was identified in the light of experimental evidence (UV-vis) and spectral simulation done by using time-dependent density functional theory (TD-DFT) with the polarized continuum model.
AB - © 2017 The Royal Society of Chemistry. Cu2O/BiVO4 composites with different Cu2O co-catalysts were synthesized by a simple impregnation method at 200 °C for 4 h under N2 atmosphere. The Cu2O powder was obtained through the chemical reduction of copper sulfate using different reducing reagents such as ascorbic acid, glucose or fructose. The as-synthesized samples were characterized by X-ray powder diffraction, scanning and transmission electron microscopies, UV-vis diffuse reflection absorption and electrochemical impedance spectroscopy. The photoactivities of the Cu2O/BiVO4 composites were evaluated in terms of the mineralization of 4-chlorophenol (4-CP) in aqueous solutions under visible-light irradiation. The role of experimental variables including the preparation method of the co-catalyst, catalyst concentration, and 4-chlorophenol initial concentration in the photocatalytic performance of Cu2O/BiVO4 catalysts was analyzed. Likewise, the viability to recover and reuse these photocatalysts was also tested. It was found that the complete abatement of 4-CP led to the formation of chlorocatechol (4-CC) without concomitantly involving the formation pathway of hydroquinone/p-benzoquinone, 4-CC was identified in the light of experimental evidence (UV-vis) and spectral simulation done by using time-dependent density functional theory (TD-DFT) with the polarized continuum model.
U2 - 10.1039/c7ra08513c
DO - 10.1039/c7ra08513c
M3 - Article
VL - 7
SP - 45885
EP - 45895
JO - RSC Advances
JF - RSC Advances
SN - 2046-2069
IS - 73
ER -