Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography

Marta Monguió-Tortajada, Carolina Gálvez-Montón, Antoni Bayes-Genis, Santiago Roura, Francesc E. Borràs

Research output: Contribution to journalReview articleResearchpeer-review

111 Citations (Scopus)


© 2019, Springer Nature Switzerland AG. Extracellular vesicles (EVs) include a variety of nanosized vesicles released to the extracellular microenvironment by the vast majority of cells transferring bioactive lipids, proteins, mRNA, miRNA or non-coding RNA, as means of intercellular communication. Remarkably, among other fields of research, their use has become promising for immunomodulation, tissue repair and as source for novel disease-specific molecular signatures or biomarkers. However, a major challenge is to define accurate, reliable and easily implemented techniques for EV isolation due to their nanoscale size and high heterogeneity. In this context, differential ultracentrifugation (dUC) has been the most widely used laboratory methodology, but alternative procedures have emerged to allow purer EV preparations with easy implementation. Here, we present and discuss the most used of the different EV isolation methods, focusing on the increasing impact of size exclusion chromatography (SEC) on the resulting EV preparations from in vitro cultured cells-conditioned medium and biological fluids. Comparatively, low protein content and cryo-electron microscopy analysis show that SEC removes most of the overabundant soluble plasma proteins, which are not discarded using dUC or precipitating agents, while being more user friendly and less time-consuming than gradient-based EV isolation. Also, SEC highly maintains the major EVs’ characteristics, including vesicular structure and content, which guarantee forthcoming applications. In sum, together with scaling-up possibilities to increase EV recovery and manufacturing following high-quality standards, SEC could be easily adapted to most laboratories to assist EV-associated biomarker discovery and to deliver innovative cell-free immunomodulatory and pro-regenerative therapies.
Original languageEnglish
JournalCellular and Molecular Life Sciences
Publication statusPublished - 1 Jan 2019


  • Exosomes
  • Isolation methods
  • Nanomedicine
  • Purification
  • Theranostics


Dive into the research topics of 'Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography'. Together they form a unique fingerprint.

Cite this