TY - JOUR
T1 - Evidence for Rho-dependent control of a virulence switch in Acinetobacter baumannii.
AU - Perez Varela, Maria
AU - Singh, Raja
AU - Colquhoun, Jennifer M
AU - Starich, Olivia G
AU - Tierney, Aimee RP
AU - Tipton, Kyle A
AU - Rather, Philip N
PY - 2023/12/12
Y1 - 2023/12/12
N2 - Acinetobacter baumannii strain AB5075 is able to interconvert at high frequency between virulent cells that form opaque colonies (VIR-O) and avirulent cells that form translucent colonies (AV-T). Cells switch from the VIR-O to the AV-T state by the combinatorial activation of at least three TetR-type transcriptional regulators (TTTRs). A genetic screen identified the transcription termination factor Rho as a major contributor that controls expression differences of these TTTRs between VIR-O and AV-T cells. Each TTTR has a long mRNA leader region where transcripts are terminated in VIR-O cells. However, in AV-T cells, the degree of termination in each TTTR leader was greatly reduced, allowing for higher levels of TTTR expression. In a strain with decreased Rho expression, or in wild-type VIR-O cells treated with the Rho inhibitor bicyclomycin, the degree of termination in each TTTR mRNA leader region was reduced. Mutations in the leader region of one TTTR, ABUW_1645, were identified that reduced the degree of termination. Purified Rho protein bound the leader region of the most frequently activated TTTR ABUW_1645 and the least frequently activated TTTR ABUW_1959 with similar affinities. This together with the observation that the levels of Rho protein were unchanged between VIR-O and AV-T cells, suggested that additional factors differentially modulate Rho activity between each variant. Finally, we demonstrate in AV-T cells that nutrient depletion is a condition that increases the levels of Rho-dependent transcription termination in the TTTR leader regions to regulate this phenotypic switch.
AB - Acinetobacter baumannii strain AB5075 is able to interconvert at high frequency between virulent cells that form opaque colonies (VIR-O) and avirulent cells that form translucent colonies (AV-T). Cells switch from the VIR-O to the AV-T state by the combinatorial activation of at least three TetR-type transcriptional regulators (TTTRs). A genetic screen identified the transcription termination factor Rho as a major contributor that controls expression differences of these TTTRs between VIR-O and AV-T cells. Each TTTR has a long mRNA leader region where transcripts are terminated in VIR-O cells. However, in AV-T cells, the degree of termination in each TTTR leader was greatly reduced, allowing for higher levels of TTTR expression. In a strain with decreased Rho expression, or in wild-type VIR-O cells treated with the Rho inhibitor bicyclomycin, the degree of termination in each TTTR mRNA leader region was reduced. Mutations in the leader region of one TTTR, ABUW_1645, were identified that reduced the degree of termination. Purified Rho protein bound the leader region of the most frequently activated TTTR ABUW_1645 and the least frequently activated TTTR ABUW_1959 with similar affinities. This together with the observation that the levels of Rho protein were unchanged between VIR-O and AV-T cells, suggested that additional factors differentially modulate Rho activity between each variant. Finally, we demonstrate in AV-T cells that nutrient depletion is a condition that increases the levels of Rho-dependent transcription termination in the TTTR leader regions to regulate this phenotypic switch.
KW - Acinetobacter baumannii
KW - Phenotypic heterogeneity
KW - Rho-dependent termination
KW - TetR regulator transcriptional regulator
UR - https://www.mendeley.com/catalogue/a4a91b20-e2b2-31d0-9b66-18e2f13bf2a6/
U2 - 10.1128/mbio.02708-23
DO - 10.1128/mbio.02708-23
M3 - Article
C2 - 38085026
SN - 2161-2129
VL - 12
JO - mBio
JF - mBio
M1 - e0270823
ER -