Enhancing Localized Pesticide Action through Plant Foliage by Silver-Cellulose Hybrid Patches

Alejandro Alonso-Díaz, Jordi Floriach-Clark, Judit Fuentes, Montserrat Capellades, Núria S. Coll, Anna Laromaine

    Research output: Contribution to journalArticleResearch

    3 Citations (Scopus)

    Abstract

    Copyright © 2019 American Chemical Society. Efficacy and efficiency of pesticide application in the field through the foliage still face many challenges. There exists a mismatch between the hydrophobic character of the leaf and the active molecule, low dispersion of the pesticides on the leaves' surface, runoff loss, and rolling down of the active molecules to the field, decreasing their efficacy and increasing their accumulation to the soil. We produced bacterial cellulose-silver nanoparticles (BC-AgNPs) hybrid patches by in situ thermal reduction under microwave irradiation in a scalable manner and obtaining AgNPs strongly anchored to the BC. Those hybrids increase the interaction of the pesticide (AgNPs) with the foliage and avoids runoff loss and rolling down of the nanoparticles. The positive antibacterial and antifungal properties were assessed in vitro against the bacteria Escherichia coli and two agro-economically relevant pathogens: the bacterium Pseudomonas syringae and the fungus Botrytis cinerea. We showed in vivo inhibition of the infection in Nicotiana benthamiana and tomato leaves, as proven by the suppression of the expression of defense molecular markers and reactive oxygen species production. The hydrogel-like character of the bacterial cellulose matrix increases the adherence to the foliage of the patches.
    Original languageEnglish
    Pages (from-to)413-419
    Number of pages13
    JournalACS Biomaterials Science and Engineering
    Volume5
    Issue number2
    DOIs
    Publication statusPublished - 11 Feb 2019

    Keywords

    • ANTIBACTERIAL PROPERTIES
    • ANTIMICROBIAL ACTIVITY
    • COMPOSITES
    • FILM
    • GREEN SYNTHESIS
    • IMPREGNATED BACTERIAL CELLULOSE
    • IONS
    • NANOCOMPOSITES
    • NANOFIBER
    • NANOPARTICLES
    • Nicotiana benthamiana
    • bacterial cellulose
    • preventing infection
    • pseudomonas
    • silver nanoparticles

    Fingerprint Dive into the research topics of 'Enhancing Localized Pesticide Action through Plant Foliage by Silver-Cellulose Hybrid Patches'. Together they form a unique fingerprint.

    Cite this