Effect of the magnitude of the decrease of rumen pH on rumen fermentation in a dual-flow continuous culture system

M. Cerrato-Sánchez, S. Calsamiglia, A. Ferret

Research output: Contribution to journalArticleResearchpeer-review

16 Citations (Scopus)

Abstract

The negative effect of pH on rumen microbial fermentation has been associated with the total amount of time that pH is below a certain threshold. However, not only the time, but also the magnitude of the pH reduction, is important. Eight 1,325-mL dual-flow continuous culture fermenters were used in 2 replicated periods to determine the effect of the magnitude of pH reduction (5.6 vs. 5.1) during 4 h/d on rumen microbial fermentation. Fermenters were maintained at a constant temperature (38.5°C) and fed 97 g/d of a 60:40 forage:concentrate diet (19.2% CP, 29.0% NDF, and 18.2% ADF, DM basis), and the solid and liquid dilution rates were controlled at 5.0 and 10.0%/h, respectively. Treatments were a constant pH 6.4 (H), 4 h/d at pH 5.6 (L), 4 h/d at pH 5.1 (VL), and 2 h/d at pH 5.1 and 2 h/d at pH 7.1 (HL). Relative to H, L did not affect OM and NDF digestion, the VFA profile, NH3-N concentration, CP degradation, or the flow of dietary N. In contrast, VL tended (P < 0.10) to reduce true OM digestion, reduce the NDF digestibility and the acetate and branch-chained VFA proportions, and increase the propionate proportion. Compared with H, VL reduced the CP degradation and the flow of dietary N. Relative to H, treatment HL did not affect OM and NDF digestibility, the acetate proportion, CP degradation, or the flow of dietary N but increased the propionate proportion and decreased the branch-chained VFA proportion and NH3-N concentration. There were no differences among treatments in the efficiency of microbial protein synthesis, the flow of bacterial N, or the flow of essential and nonessential AA. In summary, fermentation was not affected by either 4 h/d at pH 5.6 or fluctuating pH between 5.1 (2 h/d) and 7.1 (2 h/d), but when pH was at 5.1 for 4 h/d, rumen microbial fermentation was modified, suggesting that effects of low pH on rumen microbial fermentation are dependent on the magnitude of the pH decrease. ©2008 American Society of Animal Science. All rights reserved.
Original languageEnglish
Pages (from-to)378-383
JournalJournal of Animal Science
Volume86
DOIs
Publication statusPublished - 1 Feb 2008

Keywords

  • Acidosis
  • Ph
  • Rumen fermentation

Fingerprint Dive into the research topics of 'Effect of the magnitude of the decrease of rumen pH on rumen fermentation in a dual-flow continuous culture system'. Together they form a unique fingerprint.

Cite this