Effect of combined oxygenation and gettering on minority carrier lifetime in high-resistivity FZ silicon

M. Lozano, M. Ullán, C. Martínez, L. Fonseca, J. M. Rafí, F. Campabadal, E. Cabruja, C. Fleta, M. Key, S. Bermejo

    Research output: Contribution to journalArticleResearchpeer-review

    3 Citations (Scopus)

    Abstract

    High oxygen concentration in silicon increases the resistance of radiation detectors to high radiation doses. Unfortunately, high-resistivity float zone (FZ) silicon, needed for radiation detectors, has too low an oxygen content. The solution to this is silicon oxygenation. There are different ways of incorporating oxygen into silicon. The most accepted one is by high-temperature diffusion from a thick SiO2 layer. In this paper, we investigate the impact of this silicon oxygenation technique as well as the application of different gettering techniques to improve the minority carrier lifetime of high-resistivity FZ silicon substrates for radiation detectors. The minority carrier lifetimes before and after surface etching have been measured on samples subjected to different oxygenation and gettering treatments by using a quasi steady-state photoconductance technique. A lifetime improvement efficiency factor is defined for each treatment process. The lifetime efficiency factors behave independently, so that the lifetime efficiency factors associated with different sequential combinations of treatments can be estimated by a multiplicative combination. Different gettering techniques that improve or degrade the minority carrier lifetime are analyzed, and the best options for silicon radiation detector fabrication are determined. Oxygenated silicon with a minority carrier lifetime close to 1 ms can be obtained. © 2004 The Electrochemical Society. All rights reserved.
    Original languageEnglish
    JournalJournal of the Electrochemical Society
    Volume151
    Issue number10
    DOIs
    Publication statusPublished - 26 Nov 2004

    Fingerprint

    Dive into the research topics of 'Effect of combined oxygenation and gettering on minority carrier lifetime in high-resistivity FZ silicon'. Together they form a unique fingerprint.

    Cite this