(EDT-TTF-CONH<inf>2</inf>)<inf>6</inf>[Re<inf>6</inf>Se<inf>8</inf>(CN) <inf>6</inf>], a metallic Kagome-type organic-inorganic hybrid compound: Electronic instability, molecular motion, and charge localization

Stéphane A. Baudron, Patrick Batail, Claude Coulon, Rodolphe Clérac, Enric Canadell, Vladimir Laukhin, Roberto Melzi, Pawel Wzietek, Denis Jérome, Pascale Auban-Senzier, Sylvain Ravy

    Research output: Contribution to journalArticleResearchpeer-review

    71 Citations (Scopus)

    Abstract

    (EDT-TTF-CONH2)6[Re6Se8(CN) 6], space group R3, was prepared by electrocrystallization from the primary amide-functionalized ethylenedithiotetrathiafulvalene, EDT-TTF-CONH 2 (E1/21 = 0.49 V vs SCE in CH3CN), and the molecular cluster tetraanion, [Re6Se8(CN) 6]4- (E1/2 = 0.33 V vs SCE in CH 3CN), equipped with hydrogen bond donor and hydrogen bond acceptor functionalities, respectively. Its Kagome topology is unprecedented for any TTF-based materials. The metallic state observed at room temperature has a strong two-dimensional character, in coherence with the Kagome lattice symmetry, and the presence of minute amounts of [Re6Se8(CN) 6](3-). identified by electron spin spectroscopy. A structural instability toward a distorted form of the Kagome topology of lesser symmetry is observed at ca. 180 K. The low-temperature structure is associated with a localized, electrically insulating electronic ground state and its magnetic susceptibility accounted for by a model of uniform chains of localized S = V2 spins in agreement with the 100 K triclinic crystal structure and band structure calculations. A sliding motion, within one out of the three (EDT-TTF-CONH2)2 dimers coupled to the [Re 6Se8(CN6)(3-).]/[Re 6Se8(CN6)4-] proportion at any temperature, and the electronic ground state of the organic-inorganic hybrid material are analyzed on the basis of ESR, dc conductivity, 1H spin-lattice relaxation, and static susceptibility data which qualify a Mott localization in [EDT-TTF-CONH2]6[Re6Se 8(CN)6]. The coupling between the metal-insulator transition and a structural transition allows for the lifting of a degeneracy due to the ternary axis in the high temperature, strongly correlated metallic phase which, in turn, leads to Heisenberg chains at low temperature. © 2005 American Chemical Society.
    Original languageEnglish
    Pages (from-to)11785-11797
    JournalJournal of the American Chemical Society
    Volume127
    Issue number33
    DOIs
    Publication statusPublished - 24 Aug 2005

    Fingerprint Dive into the research topics of '(EDT-TTF-CONH<inf>2</inf>)<inf>6</inf>[Re<inf>6</inf>Se<inf>8</inf>(CN) <inf>6</inf>], a metallic Kagome-type organic-inorganic hybrid compound: Electronic instability, molecular motion, and charge localization'. Together they form a unique fingerprint.

    Cite this