Dynamics of the Higgins–Selkov and Selkov systems

Research output: Contribution to journalArticleResearchpeer-review

9 Citations (Scopus)


© 2018 Elsevier Ltd We describe the global dynamics in the Poincaré disc of the Higgins–Selkov model x′=k0−k1xy2,y′=−k2y+k1xy2,where k0, k1, k2 are positive parameters, and of the Selkov model x′=−x+ay+x2y,y′=b−ay−x2y,where a, b are positive parameters. We determine the regions of initial conditions with biological meaning.
Original languageEnglish
Pages (from-to)145-150
JournalChaos, Solitons and Fractals
Publication statusPublished - 1 Sept 2018


  • Higgins–Selkov system
  • Phase portrait
  • Poincaré compactification
  • Selkov system


Dive into the research topics of 'Dynamics of the Higgins–Selkov and Selkov systems'. Together they form a unique fingerprint.

Cite this