Drosophila wing modularity revisited through a quantitative genetic approach

Francesc Muñoz-Muñoz*, Valeria Paula Carreira, Neus Martínez-Abadías, Victoria Ortiz, Rolando González-José, Ignacio M. Soto

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

11 Citations (Scopus)

Abstract

© 2016 The Author(s). To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo-distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance-generating developmental processes occur and/or the magnitude of variation that they produce favor proximo-distal, rather than anterior-posterior, modularity in the Drosophila wing.
Original languageEnglish
Pages (from-to)1530-1541
JournalEvolution; international journal of organic evolution
Volume70
Issue number7
DOIs
Publication statusPublished - 1 Jul 2016

Keywords

  • Drosophila wing
  • modularity
  • multilevel approach
  • proximo-distal axis

Fingerprint

Dive into the research topics of 'Drosophila wing modularity revisited through a quantitative genetic approach'. Together they form a unique fingerprint.

Cite this