Dosimetry protocol for the preclinical trials in white-beam minibeam radiation therapy

Y. Prezado*, I. Martínez-Rovira, S. Thengumpallil, P. Deman

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

43 Citations (Scopus)

Abstract

Purpose: In the quest of a curative radiotherapy treatment for gliomas, new delivery modes are being explored. At the Biomedical Beamline of the European Synchrotron Radiation Facility, a new spatially fractionated technique, called minibeam radiation therapy (MBRT), is under development. The aims of this work were to assess different dosimetric aspects and to establish a dosimetry protocol to be applied in the forthcoming animal (rat) studies in order to evaluate the therapeutic index of this new radiotherapy approach. Methods: Absolute dosimetry was performed with a thimble ionization chamber (PTW semiflex 31010) whose center was positioned at 2 g cm-2 depth. To translate the dose measured in broad beam configuration to the dose deposited with a minibeam, the scatter factors were used. Those were assessed by using the Monte Carlo simulations and verified experimentally with Gafchromic films and a Bragg Peak chamber. The comparison of the theoretical and experimental data were used to benchmark the calculations. Finally, the dose distributions in a rat phantom were evaluated by using the validated Monte Carlo calculations. Results: The absolute dosimetry in broad beam configuration was measured in reference conditions. The dose rate was in the range between 168 and 224 Gymin, depending on the storage ring current. A scatter factor of 0.80 ± 0.04 was obtained. Percentage depth dose and lateral profiles were evaluated both in homogenous and heterogeneous slab phantoms. The general good agreement between Monte Carlo simulations and experimental data permitted the benchmark of the calculations. Finally, the peak doses in the rat head phantom were assessed from the measurements in reference conditions. In addition, the peak-to-valley dose ratio values as a function of depth in the rat head were evaluated. Conclusions: A new promising radiotherapy approach is being explored at the ESRF: Minibeam Radiation Therapy. To assess the therapeutic index of this new modality, in vivo experiments are being planned, for which an accurate knowledge of the dosimetry is essential. For that purpose, a complete set of measurements and Monte Carlo simulations was performed. The first dosimetry protocol for preclinical trials in minibeam radiation therapy was established. This protocol allows to have reproducibility in terms of dose for the different biological studies.

Original languageEnglish
Pages (from-to)5012-5020
Number of pages9
JournalMedical Physics
Volume38
Issue number9
DOIs
Publication statusPublished - Sept 2011

Keywords

  • dosimetry
  • minibeam radiation therapy
  • Monte Carlo simulations
  • synchrotron radiation

Fingerprint

Dive into the research topics of 'Dosimetry protocol for the preclinical trials in white-beam minibeam radiation therapy'. Together they form a unique fingerprint.

Cite this