DO <inf>3</inf>SE modelling of soil moisture to determine ozone flux to forest trees

P. Büker, T. Morrissey, A. Briolat, R. Falk, D. Simpson, J. P. Tuovinen, R. Alonso, S. Barth, M. Baumgarten, N. Grulke, P. E. Karlsson, J. King, F. Lagergren, R. Matyssek, A. Nunn, R. Ogaya, J. Pẽuelas, L. Rhea, M. Schaub, J. UddlingW. Werner, L. D. Emberson

    Research output: Contribution to journalArticleResearchpeer-review

    55 Citations (Scopus)


    The DO 3SE (Deposition of O 3 for Stomatal Exchange) model is an established tool for estimating ozone (O 3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O 3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O 3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (g sto), and subsequent O 3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. This DO 3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing g sto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to g sto, to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, g sto and transpiration data for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch (Betula pendula), aspen (Populus tremuloides), beech (Fagus sylvatica) and holm oak (Quercus ilex) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying events being captured well across all sites and reductions in transpiration with the onset of drought being predicted with reasonable accuracy. The more complex methods, which incorporate hydraulic resistance and plant capacitance, perform less well, with predicted drying cycles consistently underestimating the rate and magnitude of water loss from the soil. A sensitivity analysis showed that model performance was strongly dependent upon the local parameterisation of key model drivers such as the maximum g sto, soil texture, root depth and leaf area index. The results suggest that the simple modelling methods that relate g sto directly to soil water content and potential provide adequate estimates of soil moisture and influence on g sto such that they are suitable to be used to assess the potential risk posed by O 3 to forest trees across Europe. © 2012 Author(s).
    Original languageEnglish
    Pages (from-to)5537-5562
    JournalAtmospheric Chemistry and Physics
    Issue number12
    Publication statusPublished - 5 Jul 2012

    Fingerprint Dive into the research topics of 'DO <inf>3</inf>SE modelling of soil moisture to determine ozone flux to forest trees'. Together they form a unique fingerprint.

    Cite this