Dissolved Oxygen Control in Biological Wastewater Treatments with Non-Ideal Sensors and Actuators

I. Santín*, M. Barbu, C. Pedret, R. Vilanova

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

21 Citations (Scopus)

Abstract

The improvement of the dissolved oxygen control is one of the main objectives in the research works on control of wastewater treatment plants. In the research literature, most of the works are based on benchmark simulation models, where ideal sensors and ideal actuators are commonly considered. However, it is important to note that the main difficulty of the dissolved oxygen control is due to noise and delay in the sensors and actuators. These are taken into account in this article with the aim of dissolved oxygen control improvement using the benchmark simulation model no. 1. The main purpose of this work is to highlight the need to take them into account and conduct a first step in analyzing how they affect the usually considered dissolved oxygen control approaches. The work proposes an approach for dissolved oxygen control improvement within non-ideal sensors and actuators using the benchmark simulation model no. 1, where a precise catalog and characterization of sensors and actuators are also provided (although not used). Filters are used to reduce the noise of the sensors. Artificial neural networks are designed to predict the value of dissolved oxygen, to compensate the delay produced by filters and sensors, as well as to anticipate the time needed by the actuator to obtain the desired value. The artificial neural networks take into account the microorganisms present in the wastewater, as well as their food and energy source, to predict the value of dissolved oxygen. The article shows different options of artificial neural networks for dry weather, rain, storm, and variable set-point. The results show meaningful integral of square error improvements, around 80% in dry weather and greater than 50% with rain and storm influents, as well as a significant reduction of abrupt changes in the actuator.

Original languageEnglish
Pages (from-to)20639-20654
Number of pages16
JournalIndustrial & Engineering Chemistry Research
Volume58
Issue number45
DOIs
Publication statusPublished - 13 Nov 2019

Fingerprint

Dive into the research topics of 'Dissolved Oxygen Control in Biological Wastewater Treatments with Non-Ideal Sensors and Actuators'. Together they form a unique fingerprint.

Cite this